

MONITORING YEAR 1 ANNUAL REPORT

Final

HOPEWELL STREAM MITIGATION SITE Randolph County, NC NCDEQ Contract 004642 NCDMS Project Number 95352

Data Collection Period: July 2015 - September 2015 Draft Submission Date: November 13, 2015 Final Submission Date: December 18, 2015

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652 **PREPARED BY:**

1430 South Mint Street, Suite 104 Charlotte, NC 28203

Kirsten Y. Gimbert kgimbert@wildlandseng.com Phone: 704.332.7754 Fax: 704.332.3306

EXECUTIVE SUMMARY

Wildlands Engineering (Wildlands) completed a full delivery project at the Hopewell Mitigation Site (Site) for the North Carolina Division of Mitigation Services (NCDMS) to restore, enhance, and preserve a total of 12,308 linear feet (LF) of perennial and intermittent streams in Randolph County, NC. The Site is expected to generate 7,412 stream mitigation units (SMUs). The Site is located near the town of Asheboro in Randolph County, NC in the Yadkin-Pee Dee River Basin; eight digit Cataloging Unit (CU) 03040104 and the 14-digit Hydrologic Unit Code (HUC) 03040104030010 (Figure 1). The Little River eventually flows into the Pee Dee River near the town of Ingram in Richmond County. The other five streams are small headwater tributaries to the Little River. The project streams consist of the Little River, and five unnamed tributaries (UTs) to the Little River (Figures 2a and 2b). The adjacent land to the streams and wetlands is primarily pasture lands and forest.

The Site is located in the Little River watershed which was designated as a Targeted Local Watershed (TLW) in the 2009 Lower Yadkin Pee-Dee River Basin Restoration Priorities (RBRP) plan. The RBRP plan does not specifically identify stressors or project goals in this TLW, but states that continuing watershed improvements will increase ecological uplift. The intent of this project is to help meet the goals for the watershed outlined in the RBRP and provide numerous ecological benefits within the Yadkin-Pee Dee River Basin.

The project goals established in the mitigation plan (Wildlands, 2013) were completed with careful consideration of goals and objectives that were described in the RBRP and to meet NCDMS mitigation needs while maximizing the ecological and water quality uplift within the watershed. The following project goals established include:

- Restoring a degraded stream impacted by cattle to create and improve aquatic habitat, reduce sediment inputs from streambank erosion, and reduce agricultural runoff pollution; and
- Restoring a riparian buffer along stream corridors for additional terrestrial and aquatic habitat, nutrient input reduction, and water quality benefits.

The Site construction and as-built surveys were completed between July 2014 and January 2015. A conservation easement is in place on 35.954 acres of the riparian corridors to protect them in perpetuity.

Monitoring Year 1 (MY1) assessments and site visits were completed during July and September, 2015 to assess the conditions of the project. Overall, the Site has met the required vegetation and stream success criteria for MY1. The overall average stem density for the Site is 526 stems per acre and is therefore on track to meet the MY3 requirement of 320 stems per acre. All restored and enhanced streams are stable and functioning as designed. Five hydrology monitoring stations with crest gages and pressure transducers were installed on the Site to document bankfull events. At least one bankfull event has been recorded since construction completion.

HOPEWELL STREAM MITIGATION SITE

Monitoring Year 1 Annual Report

TABLE OF CONTENTS

PROJECT OVERVIEW	
oject Goals and Objectives	
onitoring Year 1 Data Assessment	
Vegetative Assessment	
Vegetation Areas of Concern	
Stream Areas of Concern	
Hydrology Assessment	
Maintenance Plan	
onitoring Year 1 Summary	
METHODOLOGY	
REFERENCES	
	oject Goals and Objectives onitoring Year 1 Data Assessment Vegetative Assessment. Vegetation Areas of Concern Stream Assessment Stream Areas of Concern Hydrology Assessment Maintenance Plan. Onitoring Year 1 Summary

APPENDICES

Appendix 1	General Tables and Figures
Figure 1	Vicinity Map
Figure 2	Project Component Map
Table 1	Project Components and Mitigation Credits
Table 2	Project Activity and Reporting History
Table 3	Project Contacts Table
Table 4	Project Information and Attributes
Appendix 2	Visual Assessment Data
Figure 3.0-3.7	Integrated Current Condition Plan View
Table 5a-f	Visual Stream Morphology Stability Assessment Table
Table 6	Vegetation Condition Assessment Table
	Stream Photographs
	Vegetation Photographs
Appendix 3	Vegetation Plot Data
Table 7	Vegetation Plot Criteria Attainment
Table 8	CVS Vegetation Plot Metadata
Table 9	Planted and Total Stem Counts (Species by Plot with Annual Means)
Appendix 4	Morphological Summary Data and Plots
Table 10a-d	Baseline Stream Data Summary
Table 11a-b	Morphology and Hydraulic Summary (Dimensional Parameters – Cross Section)
Table 12a-g	Monitoring Data – Stream Reach Data Summary
	Cross Section Plots
	Reachwide and Cross Section Pebble Count Plots
Appendix 5	Hydrology Summary Data and Plots
Table 13	Verification of Bankfull Events
	Stream Flow Gage Plots
	Bankfull Verification Photos

Section 1: PROJECT OVERVIEW

The Hopewell Stream Mitigation Site is located in central Randolph within the Yadkin-Pee Dee River Basin (USGS Hydrologic Unit 03040104) near the town of Asheboro, North Carolina. The Site is located along Hopewell Friends Road, Mack Road, and Pisgah Covered Bridge Road, just east of Interstate 74/73. The Site is located in in the Carolina Slate Belt of the Piedmont Physiographic Province (USGS, 1998). The project watershed consists primarily of agricultural and wooded land. The only significant development in the watershed is within the northern extent which includes portions of the City of Asheboro. The drainage area for the western portion of the project site is 429 acres (0.67 square miles). The drainage area for the miles).

The project streams consist of the Little River and five UTs to the Little River. Stream restoration reaches included UT2 (Reach 1 and 2), UT2A (Reach 2), UT2B (Reach 2), and UT2C (Reach 2 and 3). Stream enhancement I (EI) and enhancement II (EII) reaches included UT1B, EI (Reach 1); UT2A, EI (Reach 1); Little River, EII (Reach 2); UT1A, EII (Reach 1); UT1B, EII (Reach 2 and 3); UT2B, EII (Reach 1); and UT2C, EII (Reach 1). Preservation reaches at the Site included Little River (Reach 1) and UT1A (Reach 2). Mitigation work within the Site included restoration, enhancement, and preservation of 12,308 linear feet (LF) of perennial and intermittent stream channel. The riparian areas were planted with native vegetation to improve habitat and protect water quality. Construction activities were completed by Terry's Plumbing in November 2014. Planting and seeding activities were completed by Bruton Natural Systems, Inc. and Terry's Plumbing in January 2015. A conservation easement has been recorded and is in place along the stream riparian corridors to protect them in perpetuity; 35.954 ac (Deed Book 2371, Page 108-122) within a tract owned by Double T Farms of Randolph, LLC. The project provides 7,412 stream mitigation units (SMU's).

Directions and a map of the Site are provided in Figure 1 and project components are illustrated for the Site in Figure 2.

1.1 Project Goals and Objectives

Prior to construction activities, many of the streams on the Site, especially those that were accessed less by cattle, exhibited relative stability. However, other project reaches appeared incised and had been severely trampled by cattle resulting in unstable banks and the bed morphologies were often destroyed. Table 4 in Appendix 1 and Tables 10a through 10d in Appendix 4 present the pre-restoration conditions in detail.

This Site is intended to provide numerous ecological benefits within the Yadkin-Pee Dee River Basin. The Site will help meet the goals for the watershed outlined in the RBRP and provide numerous ecological benefits within the Yadkin-Pee Dee River Basin. While many of these benefits are limited to the Hopewell project area, others, such as pollutant removal, reduced sediment loading, and improved aquatic and terrestrial habitat, have farther-reaching effects. Expected improvements to water quality and ecological processes are outlined below as project goals and objectives. These project goals established were completed with careful consideration of goals and objectives that were described in the RBRP and to meet NCDMS mitigation needs while maximizing the ecological and water quality uplift within the watershed.

The RBRP describes the goals for the 8-digit HUC as the following:

- Continuation of watershed improvement efforts already on-going;
- Protection of valuable natural resources; and

• Development of local partnerships that will work together to implement management strategies for stormwater impacts.

The following project specific goals were established in the mitigation plan (Wildlands, 2013) to contribute to meeting management goals as described above for the Yadkin-Pee Dee Catalog Unit 03040104 and the Little River TLW include:

- Restoring a degraded stream impacted by cattle to create and improve aquatic habitat, reduce sediment inputs from streambank erosion, and reduce agricultural runoff pollution; and
- Restoring a riparian buffer along stream corridors for additional terrestrial and aquatic habitat, nutrient input reduction, and water quality benefits.

The project goals were addressed through the following project objectives:

- On-site nutrient inputs will be decreased by removing cattle from streams and filtering on-site runoff through buffer zones. Off-site nutrient inputs will be absorbed on—site by filtering flood flows through restored floodplain areas, where flood flow will spread through native vegetation;
- Restored buffers and exclusion of livestock to streams will significantly reduce inputs of livestock wastes to streams. This will eliminate a major source of fecal coliform pollution;
- Streambank erosion which contributes sediment load to the creek will be greatly reduced, if not eliminated, in the project area. Eroding stream banks will be stabilized using bioengineering, natural channel design techniques, and grading to reduce bank angles and bank height. Storm flow containing fine sediment will be filtered through restored floodplain areas, where flow will spread through native vegetation. Spreading flood flows will also reduce velocity and allow sediment to settle out. Sediment transport capacity of restored reaches will be improved so that capacity balances more closely to load;
- Restored riffle/pool sequences will promote aeration of water and create deep water zones, helping to lower water temperature. Establishment and maintenance of riparian buffers will create long-term shading of the channel flow to minimize thermal heating. Lower water temperatures will help maintain dissolved oxygen concentrations;
- In-stream structures will be constructed to improve habitat diversity and trap detritus. Wood habitat structures will be included in the stream as part of the restoration design. Such structures may include log drops and riffle structures that incorporate woody debris;
- Adjacent buffer and riparian habitats will be restored with native vegetation as part of the project. Native vegetation will provide cover and food for terrestrial wildlife. Native plant species will be planted and invasive species will be treated. Eroding and unstable areas will also be stabilized with vegetation as part of this project; and

The restored land will be protected in perpetuity through a conservation easement.

The design streams were restored to the appropriate type based on the surrounding landscape, climate, and natural vegetation communities but also with strong consideration to existing watershed conditions and trajectory. The final mitigation plan was submitted and accepted by the NCDMS in October of 2013. Construction activities were completed by Land Mechanic Designs, Inc in November 2014. Planting and seeding activities were completed by Bruton Natural Systems, Inc. in January 2015. Baseline monitoring (MYO) was conducted between December 2014 and January 2015. Annual monitoring will be conducted for seven years with the close-out anticipated to commence in 2022 given the success criteria are met.

Appendix 1 provides more detailed project activity, history, contact information, and watershed/site background information for this project.

1.2 Monitoring Year 1 Data Assessment

Annual monitoring and quarterly site visits were conducted during MY1 to assess the condition of the project. The stream and vegetation success criteria for the Site follows the approved success criteria presented in the Hopewell Stream Mitigation Plan (Wildlands, 2013).

1.2.1 Vegetative Assessment

Planted woody vegetation is being monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008). A total of 31 vegetation plots were established during the baseline monitoring within the project easement areas. All of the plots were installed using a standard 10 meter by 10 meter plot. The final vegetative success criteria will be the survival of 210 planted stems per acre in the riparian corridor along restored and enhanced reaches at the end of the seven year monitoring period (MY7). The interim measure of vegetative success for the Site will be the survival of at least 320 planted stems per acre at the end of year three of the monitoring period (MY3) and at least 260 stems per acre at the end of the seventh year of monitoring. If this performance standard is met by MY5 and stem density is trending towards success (i.e., no less than 260 five year old stems/acre), monitoring of vegetation on the Site may be terminated provided written approval is provided by the United States Army Corps of Engineers in consultation with the NC Interagency Review Team.

The MY1 vegetative survey was completed in September 2015. The 2015 vegetation monitoring resulted in an average stem density of 526 stems per acre, which is greater than the interim requirement of 320 stems/acre required at MY3, but approximately 19% less than the baseline density recorded at MY0, 649 stems/acre in January 2015. There is an average of 13 stems per plot as compared to 16 stems per plot in MY0. All 31 of the plots are on track to meet the success criteria required for MY7 (Table 9, Appendix 3). Please refer to Appendix 2 for vegetation plot photographs and the vegetation condition assessment table and Appendix 3 for vegetation data tables.

1.2.2 Vegetation Areas of Concern

While significant efforts were implemented during construction to control the invasive species within the Site, visual assessments in MY1 revealed areas in which follow up treatments will be necessary. Re-sprouts from the initial treatment of the non-native invasive shrub, Chinese privet (*Ligustrum sinense*), is present along the restoration and enhancement reaches. The non-native tree of heaven (*Ailanthus altissima*) was also noted in isolated areas along UT2 and UT2C. Other non-native species of concern include multiflora rose (*Rosa multiflora*) and Japanese honeysuckle (*Lonicera japonica*), which were identified within isolated areas along reaches of Little River, UT1A, UT1B, UT2, and UT2C. The native invasive cattail (*Typha latifolia*) is colonizing small sections of the channel within the restoration reaches of UT2C, UT2, and UT2A.

Along the upper section of UT1B Reach 1 there are several, small bare areas (<1% of the planted acreage). In these bare areas the planted trees appear healthy, but the herbaceous layer is not well established. Refer to Appendix 2 for the vegetation condition assessment table, Integrated Current Condition Plan View (CCPV), and reference photographs.

1.2.3 Stream Assessment

Morphological surveys for the MY1 were conducted in September 2015. All streams within the site are stable.

In general cross sections for UT2, UT2A, UT2B, UT2C, and UT1B show little to no change in the bankfull area, maximum depth ratio, or width-to-depth ratio. Surveyed riffle cross sections fell within the parameters defined for channels of the appropriate Rosgen stream type.

Longitudinal profile surveys are not required on the project unless visual inspection indicates reach wide vertical instability. Refer to Appendix 2 for the visual stability assessment table, CCPV map, and reference photographs. Refer to Appendix 4 for the morphological data and plots.

In general, substrate materials in the restoration and enhancement reaches indicated maintenance of coarser materials in the riffle reaches and finer particles in the pools. In most riffle cross sections, the particle size distribution for MY1 is similar or slightly larger than the as-built conditions.

1.2.4 Stream Areas of Concern

No stream areas of concern were identified during MY1.

1.2.5 Hydrology Assessment

At the end of the seven year monitoring period, two or more bankfull events must have occurred in separate years within the restoration reaches. Bankfull events were recorded on the stream reaches during the MY1 data collection.

Bankfull events were recorded on all restoration reaches during MY1 resulting in partial attainment of the stream hydrology assessment criteria. Refer to Appendix 5 for hydrologic data and graphs.

1.2.6 Maintenance Plan

Wildlands plans to implement an invasive treatment plan to reduce and control the extent of invasive species at the Site. Herbicidal treatments are planned for the fall and winter of 2015/2016. Additional follow up treatments will be conducted annually as necessary.

Wildlands plans to incorporate lime into the soil at those areas along UT1B Reach 1 that were noted with poor herbaceous growth. Incorporation of lime in these areas is expected to result in a decrease in the soil pH therefor promoting improved herbaceous growing conditions. This area will be monitored, and any additional actions deemed necessary to promote herbaceous plant growth will be taken.

1.3 Monitoring Year 1 Summary

All streams within the Site are stable and functioning as designed. The average stem density for the Site is on track to meeting the MY7 success criteria; all individual vegetation plots meet the MY1 success criteria as noted in CCPV. At least one bankfull event has been documented within the restored stream reaches at the Site.

Summary information and data related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Mitigation Plan documents available on NCDMS's website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

Section 2: METHODOLOGY

Geomorphic data were collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). All Integrated Current Condition Mapping was recorded using a Trimble handheld GPS with sub-meter accuracy and processed using Pathfinder and ArcGIS. Crest gages and pressure transducers were installed in surveyed riffle cross sections and monitored quarterly. Hydrologic monitoring instrument installation and monitoring methods are in accordance with the United States Army Corps of Engineers (USACE, 2003) standards. Vegetation monitoring protocols followed the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008).

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, C.C., Rawlins, C.L., Potyondy, J.P. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, M.T., Peet, R.K., S.D., Wentworth, T.R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Retrieved from <u>http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-5.pdf</u>.

Rosgen, D. L. 1994. A classification of natural rivers. *Catena* 22:169-199.

- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- Rosgen, D.L. 1997. A Geomorphological Approach to Restoration of Incised Rivers. Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision. Center For Computational Hydroscience and Bioengineering, Oxford Campus, University of Mississippi, Pages 12-22.
- United States Army Corps of Engineers. 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.
- United States Geological Survey. 1998. North Carolina Geology. http://www.geology.enr.state.nc.us/usgs/carolina.htm
- Wildlands Engineering, Inc. 2015. Hopewell Stream Mitigation Site Baseline Monitoring Document and As-Built Baseline Report. NCEEP, Raleigh, NC.

Wildlands Engineering, Inc. 2013. Hopewell Stream Mitigation Site Mitigation Plan. NCEEP, Raleigh, NC.

APPENDIX 1. General Tables and Figures

bast the main entrance and turn right onto Hopewel Friends Road. Travel 0.9 miles and turn right onto Mack Road. Travel 0.5 miles and entrance will be on the right.

any person outside of these previously sanctioned roles

and activites requires prior coordination with DMS.

Figure 1 Vicinity Map Hopewell Stream Mitigation Site DMS Project Number 95352 Monitoring Year 1 - 2015 Randolph County, NC

Figure 2 Project Component Map Hopewell Stream Mitigation Site DMS Project Number 95352 Monitoring Year 1 - 2015 *Randolph County, NC*

Table 1. Project Components and Mitigation Credits Hopewell Stream Mitigation Site (NCDMS Project No.95352) Monitoring Year 1 - 2015

					MITIGATION C	REDITS					
	Stre	am	Riparian	Wetland	Non-Ripar	ian Wetland	Buffer	Nitrogen Nutrient Offset	Phosphorous Nutrient Offset		
Туре	R	RE	R	RE	R	RE					
Fotals	7,248	164	N/A	N/A	N/A	N/A	N/A	N/A	N	Ά	
				Р	ROJECT COMP	ONENTS					
	Reach ID	As-Built Stationing/ Location	Existing Footage/ Acreage	Approach	Restoration or Restoration Equivalent		Restoration Footage/Acreage		Mitigation Ratio	Credits (SMU/WMU)	
STREAMS											
	Little River Reach 1	100+00 - 107+04	704	Preservation		Ρ		704	5:1	141	
	Little River Reach 2	107+04 - 126+53 128+06 - 131+57	2,374	Fencing / Invasives Control		EII	2,300		2.5:1	920	
	UT1A Reach 1	200+00 - 208+95 209+84 - 217+00	1,611	Fencing / Invasives Control		EII	1,611		2.5:1	644	
	UT1A Reach 2	217+00 - 218+17	117	Preservation		Р		117	5:1	23	
	UT1B Reach 1	300+87 - 305+67	475	Fencing / Invasives Control		EI		180	1.5:1	320	
	UT1B Reach 2 & 3	305+67 - 308+25 350+00 - 353+17	580	Fencing / Invasives Control		EII 575 2.5:1		2.5:1	230		
	UT2 Reach 1 & 2	400+00 - 415+47 416+35 - 423+16	2,419	Priority 1	Rest	Restoration 2,228 1:1		1:1	2,228		
	UT2A Reach 1	500+39 - 504+25	386	Fencing / Invasives Control		EI	:	386	1.5:1	257	
	UT2A Reach 2	504+25 - 516+21 517+00 - 518+68	1,368	Priority 1	Rest	oration	1,364		1:1	1,364	
	UT2B Reach 1	600+00 - 608+48	848	Fencing / Invasives Control		EII		348	2.5:1	339	
	UT2B Reach 2	608+48 - 610+46	114	Priority 1	Rest	oration		198	1:1	198	
	UT2C Reach 1	700+00 - 712+50	1,215	Fencing / Invasives Control		EII	1,250		2.5:1	500	
	UT2C Reach 2	712+50 - 713+60	326	Priority 1	Rest	oration		110	1:1	110	
	UT2C Reach 3	800+00 - 801+37	520	Priority 1	Rest	oration	:	137	1:1	137	

COMPONENT SUMMATION											
Restoration Level	Stream (LF)	Riparian Wetland	(acres)	Non-Riparian Wetland (acres)	Buffer (square feet)	Upland (acres)					
		Riverine	Non-Riverine								
Restoration	4,037	-	-	-	-	-					
Enhancement		-	-	-	-	-					
Enhancement I	866										
Enhancement II	6,584										
Creation		-	-	-							
Preservation	821	-	-	-		-					
High Quality Preservation	-	-	-	-		-					

Table 2. Project Activity and Reporting History

Hopewell Stream Mitigation Site (NCDMS Project No.95352) Monitoring Year 1 - 2015

Activity or Report	Data Collection Complete	Completion or Scheduled Delivery
Mitigation Plan	January 2013	November 2013
Final Design - Construction Plans	January 2013	March 2014
Construction	July 2014-November 2014	November 2014
Temporary S&E mix applied to entire project area ¹	November 2014	November 2014
Permanent seed mix applied to reach/segments	November 2014	November 2014
Bare root and live stake plantings for reach/segments	January 2015	January 2015
Baseline Monitoring Document (Year 0)	December 2014-January 2015	February 2015
Year 1 Monitoring	September 2015	December 2015
Year 2 Monitoring	2016	December 2016
Year 3 Monitoring	2017	December 2017
Year 4 Monitoring	2018	December 2018
Year 5 Monitoring	2019	December 2019
Year 6 Monitoring	2020	December 2020
Year 7 Monitoring	2021	December 2021

¹Seed and mulch is added as each section of construction is completed.

Table 3. Project Contact Table

Hopewell Stream Mitigation Site (NCDMS Project No.95352) Monitoring Year 1 - 2015

	Wildlands Engineering, Inc.				
Designer	312 West Millbrook Road, Suite 225				
Jeff Keaton, PE	Raleigh, NC 27609				
	919.851.9986				
	Terry's Plumbing				
	465 Lewallen Road				
Construction Contractor	Asheboro, NC 27205				
	Land Mechanics Designs, Inc.				
	126 Circle G Lane				
	Willow Spring, NC 27592				
	Bruton Natural Systems, Inc				
Planting Contractor	P.O. Box 1197				
	Fremont, NC 27830				
	Terry's Plumbing				
Seeding Contractor	465 Lewallen Road				
	Asheboro, NC 27205				
Seed Mix Sources	Green Resource, LLC				
Nursery Stock Suppliers					
Bare Roots	Dykes and Son Nursery				
Live Stakes	Bruton Natural Systems, Inc				
Monitoring Performers	Wildlands Engineering, Inc.				
Monitoring, POC	Kirsten Gimbert				
Monitornig, POC	704.332.7754, ext. 110				

Table 4. Project Information and Attributes

Hopewell Stream Mitigation Site (NCDMS Project No.95352) Monitoring Year 1 - 2015

PROJ	ECT INF	ORMA	ΓΙΟΝ							
Project Name	Hopowoll	Stroom M	litigation S	ito						
County	Randolph		inigation 5	ale						
Project Area (acres)	35	county								
Project Coordinates (latitude and longitude)		37" N 70	° 51′13.27″	' W						
PROJECT WATERS					ON					
Physiographic Province					siographic	Province				
River Basin	Yadkin-Pe		JI LITE FIEU	mont Fily.	siographic	FIOVINCE				
USGS Hydrologic Unit 8-digit	03040104									
USGS Hydrologic Unit 14-digit	03040104									
DWR Sub-basin	03-07-15									
Project Drainiage Area (acres)	4,517									
Project Drainage Area Percentage of Impervious Area	<1%									
CGIA Land Use Classification		Hav and F	asture Lar	nd: 2.99.05	5 - Farm Po	nds: 4 – Fo	orest Land			
REACH SU	•	-								
Parameters	Little River	UT1A	UT1B Reach 1	UT1B Reach 2&3	UT2 Reach 1	UT2 Reach 2	UT2A Reach 1	UT2A Reach 2	UT2B	UT2C
Length of Reach (linear feet) - Post-Restoration	3,004	1,728	480	575	1,547	681	386	1,364	1,046	1,497
Drainage Area (acres)	4083	38	19	45	246	378	64	102	22	51
NCDWR Stream Identification Score	43.5	22.5	24.5	30	35.5	35.5	27	35	23.7	31
NCDWR Water Quality Classification						Ċ				
Morphological Desription (stream type)	Р			Р	Р	Р		Р	1	Р
Evolutionary Trend (Simon's Model) - Pre-Restoration	1/11	1	Ш	1	III/IV	IV	Ш	III/IV		
Underlying Mapped Soils	, Badin-Tar				Georgevill			ille silty cla	y loam,	
Drainage Class	WICCRICITE			View Sana	y louin					
Soil Hydric Status										
Slope	0.0051	0.0389	0.03	0.0583	0.0093	0.0075	0.0102	0.011	0.0259	0.0154
FEMA Classification	0.0051	0.0505	0.05	0.0505		E	0.0102	0.011	0.0200	0.0101
Native Vegetation Community			Piedmont	Bottomla			sic Hardw	ood Fores	1	
Percent Composition Exotic Invasive Vegetation -Post-Restoration					0	%				
REGULAT	ORY CO	NSIDE	RATION	S						
Regulation	Applicat	le?			R	esolved?	Sup	porting D	ocument	ation
Waters of the United States - Section 404	х					х	USACE I	Nationwide	e Permit N	o.27 and
							DWQ 40	01 Water O	uality Cer	tification
Waters of the United States - Section 401	х					Х		No. 3	8885.	
Division of Land Quality (Dam Safety)	N/A					N/A		N,		
Endangered Species Act	x					x	determ County	ell Mitigati ined "no el y listed enc from USF 202	ffect" on R langered s WS dated	andolph pecies.
Historic Preservation Act	x					x		ric resource ted (letter 7/13/2	from SHPC	
Coastal Zone Management Act (CZMA)/Coastal Area Management Act (CAMA)	N/A					N/A		N,	/A	
FEMA Floodplain Compliance	x					x	Little River is a mapped Zone AE floodplain with defined base flood elevations. A floodway has not been delineated but non-encroachment widths have been defined; (FEMA Zone AE, FIRM panel 7648).			
Essential Fisheries Habitat	N/A		1			N/A		N,	/A	

APPENDIX 2. Visual Assessment Data

0 225 450 900 Feet

Figure 3.0 Integrated Current Condition Plan View (Key) Hopewell Stream Mitigation Site DMS Project Number 95352 Monitoring Year 1 - 2015 Randolph County

Figure 3.1 Integrated Current Condition Plan View (Sheet 1 of 7) Hopewell Stream Mitigation Site DMS Project Number 95352 Monitoring Year 1 - 2015 Randolph County

Ń

0 50 100 200 Feet

Figure 3.2 Integrated Current Condition Plan View (Sheet 2 of 7) Hopewell Stream Mitigation Site DMS Project Number 95352 Monitoring Year 1 - 2015 Randolph County

Figure 3.3 Integrated Current Condition Plan View (Sheet 3 of 7) Hopewell Stream Mitigation Site DMS Project Number 95352 Monitoring Year 1 - 2015 Randolph County

Figure 3.4 Integrated Current Condition Plan View (Sheet 4 of 7) Hopewell Stream Mitigation Site DMS Project Number 95352 Monitoring Year 1 - 2015 *Randolph County*

Figure 3.5 Integrated Current Condition Plan View (Sheet 5 of 7) Hopewell Stream Mitigation Site DMS Project Number 95352 Monitoring Year 1 - 2015 *Randolph County*

Figure 3.6 Integrated Current Condition Plan View (Sheet 6 of 7) Hopewell Stream Mitigation Site DMS Project Number 95352 Monitoring Year 1 - 2015 Randolph County

[]	Easement Area
	Stream Restoration
	Stream Enhancement I
	Stream Enhancement II
	Stream Preservation
	Non-project streams
	Cross Sections (XS)
	Reach Break
+	Crest Gage (CG)
+	Rain Gage
+	Photo Point
Vegetatio	on Plot Condition- MY1
	Meets Criteria
Vegetatio	on Problem Area- MY1
	Bare/Poor Herbaceous Cover
* * *	Invasive Plants
12	- And the second second second

Figure 3.7 Integrated Current Condition Plan View (Sheet 7 of 7) Hopewell Stream Mitigation Site DMS Project Number 95352 Monitoring Year 1 - 2015 *Randolph County*

2014 Aerial Photography

Table 5a. Visual Stream Morphology Stability Assessment Table

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) UT1B Reach 1 (480 LF)

Monitoring Year 1 - 2015

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	ility Aggradation 0		0	0	100%				
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	8	8			100%			
	3. Meander Pool	Depth Sufficient	8	8			100%			
	Condition	Length Appropriate	8	8			100%			
	4 Thelwar Desition	Thalweg centering at upstream of meander bend (Run)	8	8			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	8	8			100%			
-	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	n/a	n/a			n/a			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	n/a	n/a			n/a			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	n/a	n/a			n/a			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	n/a	n/a			n/a			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	n/a	n/a			n/a			

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) UT2 Reach 1 & 2 (2,228 LF)

Monitoring Year 1 - 2015

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	30	30			100%			
	3. Meander Pool	Depth Sufficient	29	29			100%			
	Condition	Length Appropriate	29	29			100%			
		Thalweg centering at upstream of meander bend (Run)	29	29			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	29	29			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
2	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	32	32		I	100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	13	13			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	13	13			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	20	20			100%			
1	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	20	20			100%			

UT2A Reach 1 & 2 (1,750 LF) Monitoring Year 1 - 2015

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	31	31			100%			
	3. Meander Pool	Depth Sufficient	31	31			100%			
	Condition	Length Appropriate	31	31			100%			
	4 Thelese Decition	Thalweg centering at upstream of meander bend (Run)	31	31			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	31	31			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
2	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	32	32			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	2	2			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	21	21			100%			
1	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	20	20			100%			

Table 5d. Visual Stream Morphology Stability Assessment Table

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) UT2B Reach 2 (198 LF)

Monitoring Year 1 - 2015

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	7	7			100%			
	3. Meander Pool	Depth Sufficient	6	6			100%			
	Condition	Length Appropriate	6	6			100%			
	4 Thelwag Desition	Thalweg centering at upstream of meander bend (Run)	6	6			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	6	6			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
2	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6		1	100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	n/a	n/a			n/a			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	n/a	n/a			n/a			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	6	6			100%			
1	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	6	6			100%			

Table 5e. Visual Stream Morphology Stability Assessment Table

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) UT2C Reach 2 (110 LF) Monitoring Year 1 - 2015

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	5	5			100%			
	3. Meander Pool	Depth Sufficient	4	4			100%			
	Condition	Length Appropriate	4	4			100%			
	4. Theleves Desition	Thalweg centering at upstream of meander bend (Run)	4	4			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	4	4			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	n/a	n/a			n/a			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	n/a	n/a			n/a			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	4	4			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	4	4			100%			

Table 5f. Visual Stream Morphology Stability Assessment Table

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) UT2C Reach 3 (137 LF) Monitoring Year 1 - 2015

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	3	3			100%			
	3. Meander Pool	Depth Sufficient	2	2			100%			
	Condition	Length Appropriate	2	2			100%			
	4 Theless Desition	Thalweg centering at upstream of meander bend (Run)	2	2			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	2	2			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
		<u>.</u>		Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	n/a	n/a			n/a			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	n/a	n/a			n/a			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	1	1			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	1	1			100%			

Table 6. Visual Stream Morphology Stability Assessment TableHopewell Stream Mitigation Site (NCDMS Project No. 95352)Monitoring Year 1 - 2015

Planted Acreage	24				
Vegetation Category	Definitions		Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	Very limited cover of both woody and herbaceous material	0.1	3	0.2	0.8%
Low Stem Density Areas	v Stem Density Areas Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.		0	0.0	0.0%
Total					0.8%
Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.		0	0	0%
Cumulative Total				0.2	0.8%

Easement Acreage

35

Vegetation Category	tation Category Definitions		Number of Polygons	Combined Acreage	% of Easement Acreage
Areas of points (if too small to render as polygons at map scale).		1,000	31	7.9	22.6%
Easement Encroachment Areas	Areas of points (if too small to render as polygons at map scale).	none	0	0	0%

Stream Photographs

HOPEWELL STREAM MITIGATION SITE Appendix 2: Visual Assessment Data - Stream Photographs

HOPEWELL STREAM MITIGATION SITE Appendix 2: Visual Assessment Data - Stream Photographs

UT2A R2 – Photo Point 9 looking upstream (09/08/2015)

UT2A R2 – Photo Point 9 looking downstream (09/08/2015)

UT2A R2 – Photo Point 11 looking upstream (09/08/2015)

UT2A R2 – Photo Point 12 looking upstream (09/08/2015)

UT2A R2 – Photo Point 11 looking downstream (09/08/2015)

UT2A R2 – Photo Point 12 looking downstream (09/08/2015)

HOPEWELL STREAM MITIGATION SITE Appendix 2: Visual Assessment Data - Stream Photographs

UT2C R3 – Photo Point 23 looking upstream (09/08/2015)

UT2C R3 – Photo Point 23 looking downstream (09/08/2015)

UT2 R1 – Photo Point 24 looking downstream (09/08/2015)

HOPEWELL STREAM MITIGATION SITE Appendix 2: Visual Assessment Data - Stream Photographs

Vegetation Photographs

Vegetation Plot 25 - (09/09/2015)

Vegetation Plot 26 - (09/09/2015)

Vegetation Plot 27 – (09/09/2015)

Vegetation Plot 28 – (09/09/2015)

HOPEWELL STREAM MITIGATION SITE Appendix 2: Visual Assessment Data - Vegetation Photographs

APPENDIX 3. Vegetation Plot Data

Table 7. Vegetation Plot Criteria Attainment

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

Plot	MY1 Success Criteria Met (Y/N)	Tract Mean
1	Y	
2	Y	-
3	Y	-
4	Y	-
5	Y	-
6	Y	-
7	Y	-
8	Y	-
9	Y	-
10	Y	-
10	Y	-
12	Y	-
13	Y	-
14	Y	-
15	Y	-
16	Y	100%
17	Ŷ	1
18	Ŷ	
19	Y	1
20	Y	1
21	Y	1
22	Y	
23	Y	
24	Y	
25	Y	
26	Y	1
27	Y	1
28	Y	1
29	Y	1
30	Y	1
31	Y	

Table 8. CVS Vegetation Tables - Metadata

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

Database name	Hopewell MY0 cvs-eep-entrytool-v2.3.1.mdb
Database location	Q:\ActiveProjects\005-02133 Hopewell Mitigation FDP\Monitoring\Monitoring Year 1\Vegetation Assessment\revised data base 9.18.15
Computer name	RUBY
File size	61239296
DESCRIPTION OF WORKSHEETS IN THIS I	DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	95352
project Name	Hopewell Stream Mitigation Site
Description	Stream Mitigation
River Basin	Yadkin-Pee Dee
Sampled Plots	31

Table 9. Planted and Total Stems

Hopewell Stream Mitigation Site (NCDMS Project No.95352) Monitoring Year 1 - 2015

											Cur	rent Plo	ot Data	(MY1 2	015)								
			Vege	etation P	lot 1	Vege	tation F	Plot 2	Vege	etation F	Plot 3	Vege	etation P	lot 4	Vege	tation F	Plot 5	Vege	tation F	lot 6	Vege	etation P	기ot 7
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т
Betula nigra	River birch	Tree				1	1	1				1	1	1							1	1	1
Fraxinus pennsylvanica	Green ash	Tree				1	1	1	6	6	6	5	5	5				3	3	3	1	1	1
Liriodendron tulipifera	Tuliptree	Tree													1	1	1	2	2	2	1	1	1
Platanus occidentalis	American sycamore	Tree	3	3	3	2	2	2	2	2	2	7	7	7	3	3	3	1	1	1	8	8	8
Quercus michauxii	Swamp chestnut oak	Tree	4	4	4	3	3	3	2	2	2				3	3	3	5	5	5	4	4	4
Quercus phellos	Willow oak	Tree	2	2	2	3	3	3	4	4	4	1	1	1	3	3	3	3	3	3			
Quercus rubra	Northern red oak	Tree	2	2	2	3	3	3							3	3	3	1	1	1			
		Stem count	11	11	11	13	13	13	14	14	14	14	14	14	13	13	13	15	15	15	15	15	15
		Size (ares)		1			1			1			1			1			1			1	
		Size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	4	4	4	6	6	6	4	4	4	4	4	4	5	5	5	6	6	6	5	5	5
	9	Stems per ACRE	445	445	445	526	526	526	567	567	567	567	567	567	526	526	526	607	607	607	607	607	607

											Cur	rent Plo	t Data	(MY1 2	015)								
			Vege	etation F	lot 8	Vege	etation F	Plot 9	Vege	tation P	lot 10	Vege	tation P	lot 11	Veget	ation P	lot 12	Vege	tation P	lot 13	Vege	tation Pl	lot 14
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Betula nigra	River birch	Tree	3	3	3	2	2	2	1	1	1	4	4	4	2	2	2				1	1	1
Fraxinus pennsylvanica	Green ash	Tree				1	1	1	2	2	2	4	4	4	3	3	3	2	2	2	1	1	1
Liriodendron tulipifera	Tuliptree	Tree							4	4	4	2	2	2	2	2	2				3	3	3
Platanus occidentalis	American sycamore	Tree	5	5	5	6	6	6	2	2	2	1	1	1	4	4	4	9	9	9			
Quercus michauxii	Swamp chestnut oak	Tree	2	2	2	1	1	1				2	2	2	1	1	1				6	6	6
Quercus phellos	Willow oak	Tree	2	2	2	1	1	1	1	1	1										2	2	2
Quercus rubra	Northern red oak	Tree	1	1	1	2	2	2	5	5	5				2	2	2	1	1	1	1	1	1
		Stem count	13	13	13	13	13	13	15	15	15	13	13	13	14	14	14	12	12	12	14	14	14
		Size (ares)		1			1			1			1			1			1			1	
		Size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	5	6	6	6	6	6	6	5	5	5	6	6	6	3	3	3	6	6	6
	9	Stems per ACRE	526	526	526	526	526	526	607	607	607	526	526	526	567	567	567	486	486	486	567	567	567

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Table 9. Planted and Total Stems

Hopewell Stream Mitigation Site (NCDMS Project No.95352) Monitoring Year 1 - 2015

											Cur	rent Plo	t Data	(MY1 2	015)								
			Vege	tation P	lot 15	Vege	tation P	lot 16	Vege	tation P	lot 17	Veget	tation P	lot 18	Veget	tation P	lot 19	Veget	ation P	lot 20	Vege	tation Pl	iot 21
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Betula nigra	River birch	Tree	1	1	1	1	1	1	3	3	3	3	3	3	1	1	1	4	4	4	2	2	2
Fraxinus pennsylvanica	Green ash	Tree	2	2	2	4	4	4	4	4	4	2	2	2	6	6	6	5	5	5	1	1	1
Liriodendron tulipifera	Tuliptree	Tree							1	1	1	2	2	2							1	1	1
Platanus occidentalis	American sycamore	Tree	9	9	9	5	5	5	4	4	4	2	2	2	4	4	4	1	1	1	2	2	2
Quercus michauxii	Swamp chestnut oak	Tree	1	1	1	2	2	2	1	1	1	1	1	1	1	1	1						
Quercus phellos	Willow oak	Tree							1	1	1	1	1	1							2	2	2
Quercus rubra	Northern red oak	Tree	2	2	2	1	1	1	1	1	1	2	2	2				5	5	5	4	4	4
		Stem count	15	15	15	13	13	13	15	15	15	13	13	13	12	12	12	15	15	15	12	12	12
		Size (ares)		1			1			1			1			1			1			1	
		Size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	5	5	5	5	7	7	7	7	7	7	4	4	4	4	4	4	6	6	6
	9	Stems per ACRE	607	607	607	526	526	526	607	607	607	526	526	526	486	486	486	607	607	607	486	486	486

											Cur	rent Plo	ot Data	(MY1 2	2015)								
			Vege	tation P	lot 22	Vege	tation P	lot 23	Vege	tation P	lot 24	Vege	tation P	lot 25	Vege	tation P	lot 26	Veget	tation P	lot 27	Vege	tation Pl	lot 28
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	т
Betula nigra	River birch	Tree	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1						
Fraxinus pennsylvanica	Green ash	Tree	4	4	4	1	1	1	1	1	1	2	2	2	3	3	3	4	4	4	6	6	6
Liriodendron tulipifera	Tuliptree	Tree				2	2	2	1	1	1							1	1	1		\square	
Platanus occidentalis	American sycamore	Tree	1	1	1	9	9	9	4	4	4	4	4	4	2	2	2	4	4	4	4	4	4
Quercus michauxii	Swamp chestnut oak	Tree	3	3	3													3	3	3		\square	
Quercus phellos	Willow oak	Tree							3	3	3	1	1	1	2	2	2	1	1	1	3	3	3
Quercus rubra	Northern red oak	Tree	1	1	1	1	1	1	2	2	2	3	3	3	3	3	3					\square	
		Stem count	11	11	11	15	15	15	13	13	13	12	12	12	11	11	11	13	13	13	13	13	13
		Size (ares)		1			1			1			1			1			1			1	
		Size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	5	5	5	5	6	6	6	5	5	5	5	5	5	5	5	5	3	3	3
	9	Stems per ACRE	445	445	445	607	607	607	526	526	526	486	486	486	445	445	445	526	526	526	526	526	526

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Table 9. Planted and Total StemsHopewell Stream Mitigation Site (NCDMS Project No.95352)Monitoring Year 1 - 2015

					Cur	rent Plo	t Data	(MY1 2	015)				Α	nnual	Summa	ry	
			Vege	tation P	lot 29	Vege	tation P	lot 30	Vege	tation P	lot 31	MY	'1 (9/20	15)	M	/0 (1/20	15)
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т
Betula nigra	River birch	Tree	2	2	2	1	1	1	1	1	1	44	44	44	53	53	53
Fraxinus pennsylvanica	Green ash	Tree	3	3	3	4	4	4	4	4	4	85	85	85	92	92	92
Liriodendron tulipifera	Tuliptree	Tree							1	1	1	24	24	24	52	52	52
Platanus occidentalis	American sycamore	Tree	1	1	1							109	109	109	114	114	114
Quercus michauxii	Swamp chestnut oak	Tree										45	45	45	46	46	46
Quercus phellos	Willow oak	Tree										36	36	36	71	71	71
Quercus rubra	Northern red oak	Tree	5	5	5	4	4	4	5	5	5	60	60	60	69	69	69
		Stem count	11	11	11	9	9	9	11	11	11	403	403	403	497	497	497
		Size (ares)		1			1			1			31			31	
		Size (ACRES)		0.02			0.02			0.02			0.77			0.77	
		Species count	4	4	4	3	3	3	4	4	4	7	7	7	7	7	7
		Stems per ACRE	445	445	445	364	364	364	445	445	445	526	526	526	649	649	649

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% APPENDIX 4. Morphological Summary Data and Plots

Table 10a. Baseline Stream Data Summary

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

Hopewell-UT2 Reaches 1 and 2

Hopewell-UT2 Reaches 1 and 2						-										-							
			PRE-RESTORA	TION CONDITION						REFERENCE	REACH DATA	ι.					DE	SIGN			AS-BUILT	/BASELINE	
Parameter	Gage	UT2	Reach 1	UT2 Rea	ch 2	Dutchma	n's Creek	UT to Ro	ocky Creek	Spencer Cre	eek Reach 1	Spencer Cro	eek Reach 2	Spencer Cr	eek Reach 3	UT2 R	Reach 1	UT2 F	Reach 2	UT2 R	each 1	UT2 R	Reach 2
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle										•		•				•							
Bankfull Wi	idth (ft)	7.9	10.9	10.7	,	23.0	32.0	1	2.2	8	3.7	2.1	2.6	1.0	1.2	1	2.5	1	.4.0	10.6	14.2	1	5.3
Floodprone Wi	. ,	12	18	14		61	69		72		29	60	>114	14	125	50	125	50	125	>68	101		•55
Bankfull Mean		1.0	1.4	1.4		1.1	1.4		1.3		.2	1.6	1.8	0.8	1.0		L.O		1.0	0.8	0.9		1.0
Bankfull Max		1.4	1.8	2.0		1.9	2.1		1.8		.9	2.1	2.6	1.0	1.2		L.5		1.5	1.3	1.7		1.5
Bankfull Cross-sectional Ar		11.1	11.4	14.9		32.9	36.1		6.3		0.6	17.8	19.7	6.6	8.7		2.0		4.3	8.4	12.7		4.8
Width/Dept		5.7	10.4	7.7		16.4	28.9		9.1		7.3	5.8	7.1	7.9	9.3		3.0		4.0	13.2	15.8	1'	5.8
Entrenchmer		1.5	1.7	1.3		2.2	2.6	(5.0	26	6.3	5.5	10.2	1.7	4.3	4.0	10.0	3.6	8.9	>7	7.1	;	>4
Bank Heigh	t Ratio	1.4	1.9	2.1			-		1.0	1	.0	1	.0	1	.0	1	L.O		1.0	1.	.0	1	1.0
	0 (mm)		0.1	12.5							-									24.2	28.0	4	5.8
Profile	<u> </u>																						
Riffle Len	orth (ft)						_	L		-		-		-		1				11	120	24	36
Riffle Slope								0.0606	0.0892	0.01	0.067		013	0.0184	0.0343	0.0105	0.0225	0.0154	0.033	0.0033	0.0227	0.0104	0.0386
Pool Len	ath (ft)								0.0052		0.007						0.0225			17	66	41	105
Pool Max De	• · · N/A	2	2.2	2.2				2.2	6.7		2.5		.3	1.2	1.8	1.8	2.4	1.9	2.5	1.7	3.6	3.2	5.0
Pool Space								26	81	13	47		/1	9	46	1.0	81	21	91	20	108	65	132
Pool Volur								20	01	15	<u> </u>		-		40	15		<u> </u>		20			152
Pattern	ne (it /							•		1		•						1					
	dath (fa)	45	79	67	69	8	4	1		24	52	38	41	10	50	20	75	22	84	5	11	32	79
Channel Beltwi Radius of Curvat		45	28	22	25					24 5	22	38	41	10	85	20	38	22	42	13	35	21	24
Rc:Bankfull Widtl		1.5	2.6	2.1	2.3					0.6	2.5	1.3	1.4	1.9	9.1	1.8	38	1.8	3	13	2.5	1.4	1.6
Meander Len		1.5	2.0	125	132	-				0.0	2.5	1.5	1.4	53	178	50	188	56	120	60	171	1.4	1.0
Meander Widt		5.7	7.2	6.3	6.4					6.0	6.0	#DIV/0!	3.6	1.6	5.4	1.6	6.0	1.6	6.0	0.5	0.8	2.1	5.2
Substrate, Bed and Transport Paramete		5.7	7.2	0.5	0.4					0.0		#BIV/0.	5.0	1.0	5.4	1.0	0.0	1.0	0.0	0.5	0.0		5.2
Ri%/Ru%/P%/								1		T		T						1					
SC%/Sa%/G%/C%/B																		-				<u> </u>	
d16/d35/d50/d84/d9		scisci	0.1/45/180	SC/4.6/12.5	/70/129	-		50/2 4/22	.6/120/256	0 1 /2 /9 /	6/77/180	50/2/9	8/42/90	1.0/0.05/	11/64/128	-		-		15/31/46/97	7/228/52048	15/31/46/97	2/220/52040
	- N/A	30/30/		30/4.0/12.5	//0/128		-	30/2.4/22	0/120/230	0.1/5/8.0	5/77/180	30/3/8.	6/42/90	1.9/8.85/	11/04/128	0	.39	-).61	0.37	0.43		.67
Reach Shear Stress (Competency Max part size (mm) mobilized at b	<u></u>							1						-		0	.39	0	.01	0.57	0.45	0.	
Stream Power (Capacity																1						<u> </u>	-
Additional Reach Parameters) vv/III							1										1					
	(CD 4)	1	0.20	0.50		24	20	1	10		.50		00	0	37		20		50	0	20		50
Drainage Are	. ,		0.38 1%	0.59		2.9			.10		.50	-	96		37 		.38 L%).59 1%	0.3	38 %		.59 1%
Watershed Impervious Cover Estim			1% G5/4	G4		B			4b		/C4		4		4		C4		1% C4		% (4		1% C4
Rosgen Classif Bankfull Veloci		3.7	4.0	3.9		В/			5.5	-		4.9		5.4	5.6		3.1		3.9	2.7	3.0		3.8
Bankfull Veloci Bankfull Dischar			45	58		20			85				97		5		40		54	2.7	38		56
Q-NFF regression	0 ()		85	112		20			85			-	,,	-		-	+0		54	25			
Q-USGS extrapolation			46	62																		<u> </u>	
	annings																						
Valley Len	0-		,465	428			-			-		-		-		1.	465	4	128	1,4	465	4	28
Channel Thalweg Len			,527	704													715		732	1,7			529
	nuosity		1.3	1.1					1.1		1		.3	1.0	1.3	1.0	1.2	1.0	1.2	1,7			1.2
Water Surface Slope	,							-				-		1.0			1.2	1		0.0			0126
Bankfull Slope			.0083	0.008	2	0.0			0235		132		047	0.019	0.022		0083		0108	0.0085	0.0086	0.0103	0.0107
Baikiuli Siop		0		0.008	~	0.0	1.7	0.0	1200	0.1		0.0	····	0.015	0.022	0.0		0.0	0100	0.0000	0.0000	0.0103	0.0107

SC: Silt/Clay <0.062 mm diameter particles (---): Data was not provided N/A: Not Applicable

Table 10b. Baseline Stream Data Summary

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

Hopewell-UT2A Reaches 1 and 2

			PRE-RESTORAT		I.	REFERENCE REACH DATA		DES	SIGN			AS-BUILT	/ва
Parameter	Gage	UT2A	Reach 1	UT2A I	Reach 2	See Table 10a.	UT2A	Reach 1	UT2A I	Reach 2	UT2A I	Reach 1	
		Min	Max	Min	Max		Min	Max	Min	Max	Min	Max	-
Dimension and Substrate - Riffle													
Bankfull Width (ft)			6.2	See Table 10a.	7.9		9	9.0	1	0.0	10).3	Т
Floodprone Width (ft)			40	6	10		50	125	50	125	>	87	T
Bankfull Mean Depth			1.0	0.8	1.0		().6	C	.7	0	.8	T
Bankfull Max Depth			2.0	1.1	1.5		().9	0.8	1.1	1	6	T
Bankfull Cross-sectional Area (ft ²)	N/A		6.2	6.1	6.2	See Table 10a.	u,	5.7		.0	8	.0	
Width/Depth Ratio			6.2	5.9	10.0		1	4.0	14	4.0	13	3.3	
Entrenchment Ratio			6.5	0.8	1.7		5.6	13.9	5	12.5	>	•8	
Bank Height Ratio			1.4	2.3	2.9		1	L.O	1	0		.0	
D50 (mm)			0.1	C	.1						34	4.3	
Profile													
Riffle Length (ft)				See Ta	ble 10a.				-		18	54	T
Riffle Slope (ft/ft)				-			0.119	0.0255	0.013	0.028	0.0032	0.0210	T
Pool Length (ft)	N/A					See Table 10a.			-		18	54	T
Pool Max Depth (ft)	N/A		2.3	1.9	2.7	See Table 10a.	1.2	1.5	1.4	1.7	1.4	2.9	T
Pool Spacing (ft)				-			14	59	15	65	40	67	
Pool Volume (ft ³)													
Pattern													
Channel Beltwidth (ft)		18	22	See Table 10a.	72		14	54	16	60	20	38	Т
Radius of Curvature (ft)		8	31	6	28		16	27	18	30	16	25	T
Rc:Bankfull Width (ft/ft)	N/A	1.3	5.0	1.0	3.5	See Table 10a.	1.8	3.0	1.8	3.0	0.5	2.4	T
Meander Length (ft)		54	61	102	173		36	135	40	150	76	116	
Meander Width Ratio		2.9	3.6	4.3	9.1		1.6	6.0	1.6	6.0	1.9	3.7	
Substrate, Bed and Transport Parameters													
				See Ta	ble 10a.								T
SC%/Sa%/G%/C%/B%/Be%		-											
d16/d35/d50/d84/d95/d100		SC/SC	C/0.1/3/7	SC/SC/	0.1/3/7						SC/2/18/	57/87/180	T
Reach Shear Stress (Competency) lb/ft ²	N/A			-		See Table 10a.	().3	0.	.36	0.	25	T
Max part size (mm) mobilized at bankfull													
Stream Power (Capacity) W/m ²													
Additional Reach Parameters													
Drainage Area (SM)			0.10	See Ta	ble 10a.		0	.10	0.	.16	0.	10	Τ
Watershed Impervious Cover Estimate (%)			<1%	<	1%		<	1%	<	1%	<	1%	T
Rosgen Classification		E,	/G5/4	E/C	65/4		(C4	(24	(24	T
Bankfull Velocity (fps)			3.0	2.7	3.1		2	2.6	3	.0	2	.2	
Bankfull Discharge (cfs)			19	1	9		:	15	2	21	1	18	
Q-NFF regression			35	4	18								
Q-USGS extrapolation	N/A		18	2	25	See Table 10a.							
Q-Mannings													
Valley Length (ft)			283	1,	198		2	83	1,	198		83	
Channel Thalweg Length (ft)			368		368		3	86	1,	311		86	
Sinuosity			1.3		.2		1.0	1.2	1.0	1.2		3	
Water Surface Slope (ft/ft) ²												006	
Bankfull Slope (ft/ft)	1	0	.0082	0.0	086		0.0	0102	0.0	110	0.0084	0.0092	

SC: Silt/Clay <0.062 mm diameter particles (---): Data was not provided N/A: Not Applicable

ILT/	BASELINE	
	UT2A F	Reach 2
	Min	Max
	9.8	10.9
	63	>88
		.7
	1.1	1.2
	6.8	8.0
	14.0	14.9
	5.7	>9
		.0
	37	7.4
	10	67
	0.0034	0.0330
	14	55
	1.5	4.1
	27	88
	15	42
	18	30
	1.8	2.8
	64	147
	1.5	3.9
		57/87/180
	0.44	0.45
	-	
		16
	<) C	L%
		.8
		.0
	19	25
untiti	1 1	198
	1,4	143
	1	
		108
		0.0109

Table 10c. Baseline Stream Data Summary

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

Hopewell-UT2B Reach 2 and UT2C Reaches 2 and 3

			PRE-RESTORAT			REFERENCE REACH DATA		DES	SIGN			AS-BUILT	/В
Parameter	Gage	L	Т2В	UT	2C	See Table 10a.	UT2B I	Reach 2	UT2C Rea	ach 2 & 3	UT2B I	Reach 2	
		Min	Max	Min	Max		Min	Max	Min	Max	Min	Max	
Dimension and Substrate - Riffle													
Bankfull Width (ft		3.4	5.1	See Table 10a.	6.4		5	.0	7	.8	5	5.2	Т
Floodprone Width (ft		4	8	7	53	-	50	125	50	125	>	41	T
Bankfull Mean Depth		0.4	0.6	0.6	0.9	7	C	.4	0	.6	C).4	T
Bankfull Max Depth		0.7	1.0	0.9	1.4	7	0.5	0.6	0.7	0.8	C).6	T
Bankfull Cross-sectional Area (ft ²	N/A	2.2	2.3	3.8	4.2	See Table 10a.	2	.1	4	.3	2	.1	T
Width/Depth Ratio		5.5	11.3	4.6	9.6	7	1	2.0	14	1.0	1	3.0	T
Entrenchment Ratio		1.2	1.6	1.2	2.6		10.0	25.0	6.4	16.0	>	>8	
Bank Height Ratio		1.7	4.0	1.0	3.4		1	0	1	.0	1	0	
D50 (mm)			2.1	6	.0						2	5.4	
Profile													
Riffle Length (ft				See Tab	ole 10a.		-		-		7	25	1
Riffle Slope (ft/ft						7	0.03	0.065	0.0180	0.0380	0.0146	0.0441	
Pool Length (ft	N/A					See Table 10a.	-		-		10	21	
Pool Max Depth (ft	N/A			1.1	1.2	See Table 10a.	0.6	1.0	1.1	1.5	1.3	2.8	
Pool Spacing (ft							8	33	12	51	19	36	
Pool Volume (ft ³													
Pattern													
Channel Beltwidth (ft		25	32	See Table 10a.	46		8	30	12	47	8	19	Т
Radius of Curvature (ft		20	20	6	20	7	9	15	14	23	9	15	1
Rc:Bankfull Width (ft/ft	N/A	2.9	3.9	1.4	3.1	See Table 10a.	1.8	3.0	1.9	3.0	1.7	2.9	
Meander Length (ft		23	21	160	165	7	20	75	31	117	40	62	
Meander Width Ratio		7.4	6.3	7.9	7.2	7	1.6	6.0	1.6	6.0	1.6	3.6	
Substrate, Bed and Transport Parameters													
Ri%/Ru%/P%/G%/S%				See Tab	ole 10a.						1		1
SC%/Sa%/G%/C%/B%/Be%													
d16/d35/d50/d84/d95/d100		SC/SC/2	2.1/18/107	SC/0.8/	6/45/78						SC/6/21/5	5/128/256	
Reach Shear Stress (Competency) lb/ft	N/A			-		See Table 10a.	0.	.49	0.46	0.72	0.	.46	1
Max part size (mm) mobilized at bankful													
Stream Power (Capacity) W/m													
Additional Reach Parameters													
Drainage Area (SM			0.03	See Tab	ole 10a.		0.	.03	0.	08	0.	.03	Т
Watershed Impervious Cover Estimate (%)			<1%	<1	1%	-	<	1%	<1	L%	<	1%	1
Rosgen Classification	1		G4	E/	G4	-	(24	C	4	C	4b	1
Bankfull Velocity (fps		3.0	3.2	3.3	3.7	-		3	2	.7	2	7	1
Bankfull Discharge (cfs			7	1	4	7		7	1	.3		6	1
Q-NFF regression			18	3	1	7							
Q-USGS extrapolation	N/A		9	1	5	See Table 10a.							
Q-Mannings													
Valley Length (ft			183	29	96		1	83	22	29	1	83	
Channel Thalweg Length (ft)			114	32	26		1	98	24	47	1	98	L
Sinuosity	,		1.2	1	.1	_] [1.0	1.2	1.0	1.2		1	
Water Surface Slope (ft/ft)				-		[-		0.0	211	
Bankfull Slope (ft/ft)		0.	0250	0.0	120		0.0	259	0.0154	0.024	0.0207	0.0215	1

SC: Silt/Clay <0.062 mm diameter particles (---): Data was not provided N/A: Not Applicable

.т/	BASELINE	
	UT2C Rea	ach 2 & 3
	Min	Max
	9	.9
		48
		.5
		.1
		.3
		3.4
		5
		.0
	18	3.4
	6	20
	0.0051	0.0584
	3	25
	2.2	3.7
	23	36
	10	25
	14	15
	1.4	1.5
	45	82
	1.0	2.5
	SC/SC/9/4	15/78/128
		1.11
	0.	08
	<1	L%
	C4/	C4b
	2	.1
	1	.1
		29
		47
		.1
	0.0083	0.0365
	0.0102	0.0459
Table 10d. Baseline Stream Data Summary

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

Hopewell-UT1B Reach 1

			TORATION DITION	REFERENCE REACH DATA	DES	SIGN	AS-BUILT/	BASELINE
Parameter	Gage	UT1B	Reach 1	See Table 10a.	UT1B I	Reach 1	UT1B R	leach 1
		Min	Max		Min	Max	Min	Max
imension and Substrate - Riffle								
Bankfull Width (ft)		7.1	13.2		5	5.0	4.	.8
Floodprone Width (ft)		8	28	1	10	25	12	2.4
Bankfull Mean Depth		0.7	1.1	1	C).4	0.	.4
Bankfull Max Depth		1.2	1.9	1	C).5	0.	.6
Bankfull Cross-sectional Area (ft ²)	N/A	8.0	12.0	See Table 10a.	1	L.9	1.	.8
Width/Depth Ratio		10.1	12.0		1	3.0	13	1.3
Entrenchment Ratio		2	2.2] [10.0	25.0	2.	.6
Bank Height Ratio		2	2.5		1	L.O	1.	.0
D50 (mm)		5	2.3				56	5.3
rofile								
Riffle Length (ft)							11	47
Riffle Slope (ft/ft)				1	0.0154	0.033	0.0185	0.064
Pool Length (ft)	NI/A			See Table 10a			20	105
Pool Max Depth (ft)	N/A	1.4	2.6	See Table 10a.	1.9	2.5	1.1	1.6
Pool Spacing (ft)^			1	21	91	56	103	
Pool Volume (ft ³)				1				
attern								
Channel Beltwidth (ft)	1	20	47		22	84		
Radius of Curvature (ft)		10	84	-	25	42		-
Rc:Bankfull Width (ft/ft)	N/A	0.9	7.5	See Table 10a.	1.8	3.0		
Meander Length (ft)	,	68	294		56	210		
Meander Width Ratio		1.8	4.2	1 1	1.6	6.0		
ubstrate, Bed and Transport Parameters				•	-		1	
Ri%/Ru%/P%/G%/S%								
SC%/Sa%/G%/C%/B%/Be%				4				
d16/d35/d50/d84/d95/d100		SC/15 41/5	2.3/136/172	4			SC/1/6/12	8/256/512
Reach Shear Stress (Competency) lb/ft ²	N/A			See Table 10a.	0	.61	0.	
Max part size (mm) mobilized at bankfull				4 F	0.		0	<i>.</i>
Stream Power (Capacity) W/m ²				4 F				
additional Reach Parameters							1	
			02	т — — — т		02		02
Drainage Area (SM) Watershed Impervious Cover Estimate (%)			.03 1%	4 -		.03 1%	0.0	
Watershed Impervious Cover Estimate (%) Rosgen Classification			1% /B4	4 -		1% 4b	<1 C4	
-			/B4 7	4		40 3.3	2	
Bankfull Velocity (fps) Bankfull Discharge (cfs)			1.7	4 -		6	2	
			12	4		U	5	נ
Q-NFF regression Q-USGS extrapolation	N/A		7	See Table 10a.				
•	N/A		/	See Table 10a.				
Q-Mannings Valley Length (ft)			31	4 -	A	31	43	01
valley Length (Tt)			-75	4		-31 -75	43	
Channel Thalword Learth (ft)		4			4			
Channel Thalweg Length (ft)		4	1		1.0	1 2	1	1
Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) ²			1] [1.0	1.2	0.0	

SC: Silt/Clay <0.062 mm diameter particles (---): Data was not provided

N/A: Not Applicable

Table 11a. Baseline Stream Data Summary

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

	C	ross-Se	ction 1,	UT2A I	R1 (Poo	1)	C	ross-Se	ction 2,	UT2A F	R1 (Riffl	e)	C	ross-Se	ction 3,	UT2A F	2 (Riffl	e)	C	Cross-Se	ction 4	, UT2A I	R2 (Poc	ol)
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	Table 1	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
based on fixed bankfull elevation (ft)	722.6	722.6					722.4	722.4					719.7	719.7					719.6	719.6				
Bankfull Width (ft)	12.1	12.7					10.3	9.7					9.8	10.3					12.1	12.1				
Floodprone Width (ft)							>87	>88					>88	>87										
Bankfull Mean Depth (ft)	1.4	1.3					0.8	0.8					0.7	0.7					1.4	1.3				
Bankfull Max Depth (ft)	2.7	2.5					1.6	1.3					1.1	1.1					3.0	2.7				
Bankfull Cross-Sectional Area (ft ²)	16.8	16.5					8.0	7.6					6.8	6.7					16.7	15.6				
Bankfull Width/Depth Ratio	8.7	9.8					13.3	12.4					14.0	15.8					8.8	9.4				
Bankfull Entrenchment Ratio							>8	>9					>9	>8										
Bankfull Bank Height Ratio	1.0	1.0					1.0	1.0					1.0	1.0					1.0	1.0				
d50 (mm)							34.3	40.3					39.8	26.3										
	C	ross-Se	ction 5,	UT2A I	R2 (Poo	l)	C	ross-Se	ction 6,	UT2A F	R2 (Riffl	e)	(Cross-S	ection 7	', UT2 R	2 (Pool)	C	Cross-Se	ection 8	, UT2 R	2 (Riffle	e)
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
based on fixed bankfull elevation (ft)	713.5	713.5					713.4	713.4					705.9	705.9					705.0	705.0				
Bankfull Width (ft)	12.7	12.8					10.9	14.0					32.2	32.4					13.1	12.4				
Floodprone Width (ft)							63	66											>55	>60				
Bankfull Mean Depth (ft)	1.0	0.9					0.7	0.6					1.2	1.3					1.1	1.3				
Bankfull Max Depth (ft)	1.6	1.7					1.2	1.2					3.8	3.6					1.5	1.8				
Bankfull Cross-Sectional Area (ft ²)	12.3	12.1					8.0	9.0					38.6	41.8					14.6	16.0				
Bankfull Width/Depth Ratio	13.2	13.5					14.9	21.8					26.9	25.1					11.8	9.6				
Bankfull Entrenchment Ratio							5.7	4.7											>4	>5				
Bankfull Bank Height Ratio	1.0	1.0					1.0	1.0					1.0	1.0					1.0	1.0				
d50 (mm)							37.4	41.6											45.8	25.7				
	C	ross-Se	ction 9,	UT2B F	2 (Riffl	e)	C	ross-See	tion 10	, UT2B	R2 (Poo	ol)												
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5												
based on fixed bankfull elevation (ft)	724.4	724					723.4	723.4																
Bankfull Width (ft)	5.2	6.0					10.8	11.3																
Floodprone Width (ft)	>41	>29						-																
Bankfull Mean Depth (ft)	0.4	0.3					0.8	0.8																
Bankfull Max Depth (ft)	0.6	0.5					1.5	1.5																
Bankfull Cross-Sectional Area (ft ²)	2.1	1.8					8.3	8.6																
Bankfull Width/Depth Ratio	13.0	19.9					14.1	14.8																
Bankfull Entrenchment Ratio	>8	>5																						
Bankfull Bank Height Ratio	1.0	1.0					1.0	1.0																
d50 (mm)	25.4	33.7																						

Table 11b. Baseline Stream Data Summary

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

	С	ross-Se	ction 11	L, UT2 F	R1 (Riffl	e)	C	ross-Se	ction 12	2, UT2 R	R1 (Riffl	e)	C	Cross-Se	ection 1	3, UT2 I	R1 (Poo	I)	C	ross-Seo	tion 14	I, UT1B	R1 (Po	ol)
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	Table 1	Base	MY1	MY2	MY3	MY4	MY5
based on fixed bankfull elevation (ft)	719.3	719.3					717.3	717.3					717.4	717.4					764.2	764.2				
Bankfull Width (ft)	14.2	13.7					10.6	10.6					19.6	17.4					5.2	4.9				
Floodprone Width (ft)	101	105					>68	>57																
Bankfull Mean Depth (ft)	0.9	1.0					0.8	0.7					1.2	1.1					0.5	0.2				
Bankfull Max Depth (ft)	1.7	1.8					1.3	1.1					2.4	2.0					0.7	0.3				
Bankfull Cross-Sectional Area (ft ²)	12.7	14.1					8.4	7.3					23.1	18.5					2.5	1.0				
Bankfull Width/Depth Ratio	15.8	13.3					13.2	15.6					16.7	16.4					10.4	23.3				
Bankfull Entrenchment Ratio	7.1	7.6					>7	>5																
Bankfull Bank Height Ratio	1.0	1.0					1.0	1.0					1.0	1.0					1.0	1.0				
d50 (mm)	28.0	17.4					24.2	22.1																
	Cr	oss-Sec	tion 15	, UT1B	R1 (Riff	le)	Cr	oss-Sec	tion 16	, UT2C	R <mark>2 (</mark> Riff	le)	Ci	ross-Se	ction 17	, UT2C	R2 (Poo	ol)						
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5						
based on fixed bankfull elevation (ft)	761.9	761.9					709.2	709.2					708.3	708.3										
Bankfull Width (ft)	4.8	4.6					9.9	9.0					13.0	12.8										
Floodprone Width (ft)	12.4	7.5					>48	>45																
Bankfull Mean Depth (ft)	0.4	0.2					0.5	0.5					0.9	0.8										
Bankfull Max Depth (ft)	0.6	0.3					1.1	1.0					2.0	2.0										
Bankfull Cross-Sectional Area (ft ²)	1.8	1.0					5.3	4.6					11.2	10.7										
Bankfull Width/Depth Ratio	13.3	22.1					18.4	17.5					15.1	15.3										
Bankfull Entrenchment Ratio	2.6	1.6					>5	>5																
Bankfull Bank Height Ratio	1.0	1.0					1.0	1.0					1.0	1.0										
d50 (mm)	56.3	69.7					18.4	10.8																

Table 12a. Monitoring Data - Stream Reach Data Summary

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

Hopewell-UT1B Reach 1

Parameter	As-Built	t/Baseline	N	IY1	N	1Y2	N	1Y3	м	1¥4	м	1¥5	М	IY6	М	1Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle		•		•		•	•	•	•	•		•		•		•
Bankfull Width (ft)		4.8	4	.6												
Floodprone Width (ft)	1	12.4	7	.5												
Bankfull Mean Depth		0.4	(.2												
Bankfull Max Depth		0.6	(.3												
Bankfull Cross Sectional Area (ft ²)		1.8	1	0												
Width/Depth Ratio	1	13.3	2	2.1												
Entrenchment Ratio		2.6	1	6												
Bank Height Ratio		1.0	1	.0												
D50 (mm)	5	56.3	6	9 .7												
Profile					-											
Riffle Length (ft)	11	47														
Riffle Slope (ft/ft)	0.0185	0.0646			1						1					
Pool Length (ft)	20	105			1						1					
Pool Max Depth (ft)	1.1	1.6														
Pool Spacing (ft)	56	103			1	1					1					
Pool Volume (ft ³)																
Pattern				•									•	•		•
Channel Beltwidth (ft)																
Radius of Curvature (ft)					1						1					
Rc:Bankfull Width (ft/ft)					1	1					1					
Meander Wave Length (ft)																
Meander Width Ratio					1						1					
Additional Reach Parameters				•									•	•		•
Rosgen Classification	(C4b														
Channel Thalweg Length (ft)		480														
Sinuosity (ft)		1.1														
Water Surface Slope (ft/ft)		0270														
Bankfull Slope (ft/ft)	0.0246	0.0260														
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	SC/1/6/1	28/256/512	SC/0.7/7/13	9/241/>2048												
% of Reach with Eroding Banks		0%	(1%												

Table 12b. Monitoring Data - Stream Reach Data Summary

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

Hopewell-UT2 Reach 1

A - D	/D		N (4				wa.		N/A				NC		×7
As-Built/	Baseline	M	Y1	IV	1¥2	IV	143	M	¥4	M	¥5	M	Υ6	M	¥7
Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
10.6	14.2	10.6	13.7												
>68	101	>57	105												
0.8	0.9	0.7	1.0												
1.3	1.7	1.1	1.8												
8.4	12.7	7.3	14.1												
13.2	15.8	13.3	15.6												
>7	7.1	>5	7.6												
1	.0	1	.0												
24.2	28.0	17.4	22.1												
11	120														
0.0033	0.0227														
17	66														
1.7	3.6														
20	108				1										
				•				•							
5	11														
13															
1.2															
0.5	0.8														
		1							1				1		
C	4														
15/31/46/97	7/228/>2048	SC/5.6/2011	2/237/2048												
	Min 10.6 >68 0.8 1.3 8.4 13.2 >7 1 24.2 11 0.0033 17 1.7 20 - 5 13 1.2 60 0.5 - 5 13 1.2 60 0.5 - - - - - - - - - - - - -	10.6 14.2 >68 101 0.8 0.9 1.3 1.7 8.4 12.7 13.2 15.8 >7 7.1 1.0 24.2 28.0 11 120 0.0033 0.0227 17 66 1.7 3.6 20 108 5 11 13 36 1.2 2.5 60 171 0.5 0.8 C4 1,787 1.20 0.0087	Min Max Min 10.6 14.2 10.6 >58 101 >57 0.8 0.9 0.7 1.3 1.7 1.1 8.4 12.7 7.3 13.2 15.8 13.3 >7 7.1 >5 1.0 1 24.2 28.0 17.4 11 120 1 1 1 0.0033 0.0227 1 1 1 0.0033 0.0227 1 1 1 17 66 1 1 1 1 0.0033 0.0227 1 <td>Min Max Min Max 10.6 14.2 10.6 13.7 >68 101 >57 105 0.8 0.9 0.7 1.0 1.3 1.7 1.1 1.8 8.4 12.7 7.3 14.1 13.2 15.8 13.3 15.6 >7 7.1 >5 7.6 1.0 1.0 1.0 1.0 24.2 28.0 17.4 22.1 11 120 1.0 1.0 0.0033 0.0227 1.1 1.1 17 66 1.1 1.1 1.1 0.0033 0.0227 1.1 1.1 1.1 1.7 3.6 1.2 1.2 1.1 1.1 1.3 36 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1</td> <td>Min Max Min Max Min 10.6 14.2 10.6 13.7 </td> <td>Min Max Min Max Min Max 10.6 14.2 10.6 13.7 568 101 >57 105 0.8 0.9 0.7 1.0 1.3 1.7 1.1 1.8 8.4 12.7 7.3 14.1</td> <td>Min Max Min Max Min Max Min 10.6 14.2 10.6 13.7 568 101 >57 105 0.8 0.9 0.7 1.0 1.3 1.7 1.1 1.8 8.4 12.7 7.3 14.1 13.2 15.8 13.3 15.6 1.0 1.0 1.0 24.2 28.0 17.4 22.1</td> <td>Min Max Min Max Min Max Min Max 10.6 14.2 10.6 13.7 Image: Constraint of the second of the</td> <td>Min Max Min Max Min Max Min Max Min 10.6 14.2 10.6 13.7 68 101 .57 105 1.3 1.7 1.1 1.8 8.4 12.7 7.3 14.1 .</td> <td>Min Max Min Max Min Max Min Max Min Max Min Max 10.6 14.2 10.6 13.7</td> <td>Min Max Min Max Min<td>MinMaxMinMaxMinMaxMinMaxMinMaxMinMaxMinMaxMinMaxMinMax10.614.210.613.710</td><td>Min Max Min Max Min<td>Min Max Min Max 106 1.0</td><td>MinMaxMinM</td></td></td>	Min Max Min Max 10.6 14.2 10.6 13.7 >68 101 >57 105 0.8 0.9 0.7 1.0 1.3 1.7 1.1 1.8 8.4 12.7 7.3 14.1 13.2 15.8 13.3 15.6 >7 7.1 >5 7.6 1.0 1.0 1.0 1.0 24.2 28.0 17.4 22.1 11 120 1.0 1.0 0.0033 0.0227 1.1 1.1 17 66 1.1 1.1 1.1 0.0033 0.0227 1.1 1.1 1.1 1.7 3.6 1.2 1.2 1.1 1.1 1.3 36 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	Min Max Min Max Min 10.6 14.2 10.6 13.7	Min Max Min Max Min Max 10.6 14.2 10.6 13.7 568 101 >57 105 0.8 0.9 0.7 1.0 1.3 1.7 1.1 1.8 8.4 12.7 7.3 14.1	Min Max Min Max Min Max Min 10.6 14.2 10.6 13.7 568 101 >57 105 0.8 0.9 0.7 1.0 1.3 1.7 1.1 1.8 8.4 12.7 7.3 14.1 13.2 15.8 13.3 15.6 1.0 1.0 1.0 24.2 28.0 17.4 22.1	Min Max Min Max Min Max Min Max 10.6 14.2 10.6 13.7 Image: Constraint of the second of the	Min Max Min Max Min Max Min Max Min 10.6 14.2 10.6 13.7 68 101 .57 105 1.3 1.7 1.1 1.8 8.4 12.7 7.3 14.1 .	Min Max Min Max Min Max Min Max Min Max Min Max 10.6 14.2 10.6 13.7	Min Max Min <td>MinMaxMinMaxMinMaxMinMaxMinMaxMinMaxMinMaxMinMaxMinMax10.614.210.613.710</td> <td>Min Max Min Max Min<td>Min Max Min Max 106 1.0</td><td>MinMaxMinM</td></td>	MinMaxMinMaxMinMaxMinMaxMinMaxMinMaxMinMaxMinMaxMinMax10.614.210.613.710	Min Max Min <td>Min Max Min Max 106 1.0</td> <td>MinMaxMinM</td>	Min Max 106 1.0	MinMaxMinM

Table 12c. Monitoring Data - Stream Reach Data Summary

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

Hopewell-UT2 Reach 2

Parameter	As-Built,	/Baseline	M	Y1	ſ	/1¥2	м	1Y3	М	Y4	М	Y5	м	Y6	M	1Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)		5.3	11													
Floodprone Width (ft)	>	55	>	50												
Bankfull Mean Depth	1	.0	1	.3												
Bankfull Max Depth		.5	1	.8												
Bankfull Cross Sectional Area (ft ²)	14	1.8	10	5.0												
Width/Depth Ratio	15	5.8	9	.6												
Entrenchment Ratio	~	-4	~	5												
Bank Height Ratio		.0	1													
D50 (mm)	45	5.8	2	5.7												
Profile																
Riffle Length (ft)	24	36														
Riffle Slope (ft/ft)	0.01039	0.03859														
Pool Length (ft)	41	105														
Pool Max Depth (ft)	3.2	5.0														
Pool Spacing (ft)	65	132														
Pool Volume (ft ³)	-															
Pattern																
Channel Beltwidth (ft)	32	79														
Radius of Curvature (ft)	21	24														
Rc:Bankfull Width (ft/ft)	1.4	1.6														
Meander Wave Length (ft)	113	120														
Meander Width Ratio	2.1	5.2														
Additional Reach Parameters																
Rosgen Classification	0	24														
Channel Thalweg Length (ft)	5	29				1		1								
Sinuosity (ft)	1	.2				1		1								
Water Surface Slope (ft/ft)	0.0	126						1								
Bankfull Slope (ft/ft)	0.0103	0.0107														
Ri%/Ru%/P%/G%/S%	-															
SC%/Sa%/G%/C%/B%/Be%	-															
d16/d35/d50/d84/d95/d100	15/31/46/9	7/228/>2048	SC/5.6/201	2/237/2048												
% of Reach with Eroding Banks		%		%		•		•		•						•

Table 12d. Monitoring Data - Stream Reach Data Summary

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

Hopewell-UT2A Reach 1

Parameter	As-Built	/Baseline	М	IY1	N	1Y2	N	1Y3	м	IY4	М	Y5	М	Y6	М	Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)	1	0.3	9	.7												
Floodprone Width (ft)	>	•87	>	88												
Bankfull Mean Depth	C).8	0	.8												
Bankfull Max Depth		l.6	1													
Bankfull Cross Sectional Area (ft ²)	8	3.0	7	.6												
Width/Depth Ratio		3.3	12	2.4												
Entrenchment Ratio	;	>8	>	»9												
Bank Height Ratio	1	L.O	1	.0												
D50 (mm)	34	4.3	40	0.3												
Profile																
Riffle Length (ft)	18	54														
Riffle Slope (ft/ft)	0.0032	0.0210														
Pool Length (ft)	18	54														
Pool Max Depth (ft)	1.4	2.9														
Pool Spacing (ft)	40	67														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	20	38														
Radius of Curvature (ft)	16	25			1		1	1								
Rc:Bankfull Width (ft/ft)	0.5	2.4			1		1	1								
Meander Wave Length (ft)	76	116			1		1	1								
Meander Width Ratio	1.9	3.7			1		1									
Additional Reach Parameters				•	•	•			•	•						
Rosgen Classification	(C4														
Channel Thalweg Length (ft)	1,	443														
Sinuosity (ft)		1.2														
Water Surface Slope (ft/ft)		0108														
Bankfull Slope (ft/ft)	0.0107	0.0109														
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	SC/2/18/	57/87/180	-													
% of Reach with Eroding Banks)%	0	1%												

Table 12e. Monitoring Data - Stream Reach Data Summary

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

Hopewell-UT2A Reach 2

Parameter	As-Built/	/Baseline	M	IY1	Γ	/1Y2	N	1Y3	м	Y4	м	Y5	м	Y6	M	Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)	9.8	10.9	10.3	14.0												
Floodprone Width (ft)	63	>88	66	>87												
Bankfull Mean Depth	0	.7	0.6	0.7												
Bankfull Max Depth	1.1	1.2	1.1	1.2												
Bankfull Cross Sectional Area (ft ²)	6.8	8.0	6.7	9.0												
Width/Depth Ratio	14.0	14.9	15.8	21.8												
Entrenchment Ratio	5.7	>9	4.7	>8												
Bank Height Ratio	1	.0	1	.0												
D50 (mm)	34.3	37.4	26.3	41.6												
Profile																
Riffle Length (ft)	10	67														
Riffle Slope (ft/ft)	0.0034	0.0330														
Pool Length (ft)	14	55														
Pool Max Depth (ft)	1.5	4.1														
Pool Spacing (ft)	27	88				1		1								
Pool Volume (ft ³)	-															
Pattern																
Channel Beltwidth (ft)	15	42														
Radius of Curvature (ft)	18	30				1		1								
Rc:Bankfull Width (ft/ft)	1.8	2.8						1								
Meander Wave Length (ft)	64	147						1								
Meander Width Ratio	1.5	3.9				1		1								
Additional Reach Parameters		•		•	•	•	•		•							
Rosgen Classification	C	.4														
Channel Thalweg Length (ft)	1,4	143														
Sinuosity (ft)		.2														
Water Surface Slope (ft/ft)		108														
Bankfull Slope (ft/ft)	0.0107	0.0109														
Ri%/Ru%/P%/G%/S%		-														
SC%/Sa%/G%/C%/B%/Be%	-															
d16/d35/d50/d84/d95/d100	SC/2/18/5	57/87/180	SC/13/28/1	28/220/362												
% of Reach with Eroding Banks		%		1%												

Table 12f. Monitoring Data - Stream Reach Data Summary

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

Hopewell-UT2B Reach 2

Parameter	As-Built,	/Baseline	М	Y1	r	/1Y2	М	Y3	М	Y4	М	Y5	М	Y6	M	1Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)	5	.2	6	.0												
Floodprone Width (ft)	>	41	>	29												
Bankfull Mean Depth	0	.4	0	.3												
Bankfull Max Depth		.6		.5												
Bankfull Cross Sectional Area (ft ²)		.1	1													
Width/Depth Ratio	13	3.0	19	9.9												
Entrenchment Ratio	>	8	>	5												
Bank Height Ratio	1	.0	1	.0												
D50 (mm)	25	5.4	33	3.7												
Profile																
Riffle Length (ft)	7	25														
Riffle Slope (ft/ft)	0.0146	0.0441														
Pool Length (ft)	10	21														
Pool Max Depth (ft)	1.3	2.8														
Pool Spacing (ft)	19	36														
Pool Volume (ft ³)	-															
Pattern																
Channel Beltwidth (ft)	8	19														
Radius of Curvature (ft)	9	15														
Rc:Bankfull Width (ft/ft)	1.7	2.9														
Meander Wave Length (ft)	40	62														
Meander Width Ratio	1.6	3.6														
Additional Reach Parameters																
Rosgen Classification	C	4b														
Channel Thalweg Length (ft)	1	98			1	1										
Sinuosity (ft)	1	.1			1	1										
Water Surface Slope (ft/ft)	0.0	211			1	1										
Bankfull Slope (ft/ft)	0.0207	0.0215														
Ri%/Ru%/P%/G%/S%	-															
SC%/Sa%/G%/C%/B%/Be%	-															
d16/d35/d50/d84/d95/d100	SC/6/21/5	5/128/256	SC/4/9/3	8/83/180												
% of Reach with Eroding Banks		%	0	%												

Table 12g. Monitoring Data - Stream Reach Data Summary

Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015

Hopewell-UT2C Reach 2 & 3

Parameter	As-Built	:/Baseline	N	1Y1	N	1Y2	N	IY3	м	1Y4	м	1Y5	м	1Y6	М	¥7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)		9.9	9	9.0												
Floodprone Width (ft)	>	•48		45												
Bankfull Mean Depth	().5	().5												
Bankfull Max Depth		1.1	1	L.O												
Bankfull Cross Sectional Area (ft ²)	!	5.3	4	1.6												
Width/Depth Ratio	1	8.4	1	7.5												
Entrenchment Ratio		>5	5	5.0												
Bank Height Ratio		1.0	1	1.0												
 D50 (mm)	1	8.4	1	0.8												
Profile																
Riffle Length (ft)	6	20														
Riffle Slope (ft/ft)	0.0051	0.0584		1		1					1					
Pool Length (ft)	3	25														
Pool Max Depth (ft)	2.2	3.7														
Pool Spacing (ft)	23	36		1							1					
Pool Volume (ft ³)				1		1					1					
Pattern							•	•	•	•		•				
Channel Beltwidth (ft)	10	25														
Radius of Curvature (ft)	14	15														
Rc:Bankfull Width (ft/ft)	1.4	1.5														
Meander Wave Length (ft)	45	82														
Meander Width Ratio	1.0	2.6		1							1					
Additional Reach Parameters																
Rosgen Classification	C4	/C4b														
Channel Thalweg Length (ft)		247														
Sinuosity (ft)		1.1														
Water Surface Slope (ft/ft)	0.0083	0.0365														
Bankfull Slope (ft/ft)	0.0102	0.0459														
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100		45/78/128	SC/0.2/6/	73/124/256												
% of Reach with Eroding Banks		0%)%												

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Cross Section Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT1B-R1, Reachwide

		Diame	ter (mm)	Ра	rticle Co	unt		ummary
Par	ticle Class	min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	3	22	25	25	25
	Very fine	0.062	0.125					25
	Fine	0.125	0.250		2	2	2	27
SAND	Medium	0.25	0.50	2	4	6	6	33
יכ	Coarse	0.5	1.0		4	4	4	37
	Very Coarse	1.0	2.0		2	2	2	39
	Very Fine	2.0	2.8					39
	Very Fine	2.8	4.0	3	3	6	6	45
	Fine	4.0	5.6		1	1	1	46
	Fine	5.6	8.0	1	4	5	5	51
JE	Medium	8.0	11.0		3	3	3	54
GRAVEL	Medium	11.0	16.0		2	2	2	56
	Coarse	16.0	22.6					56
	Coarse	22.6	32					56
	Very Coarse	32	45					56
	Very Coarse	45	64	6		6	6	62
	Small	64	90	7	1	8	8	70
COBBLE	Small	90	128	10	2	12	12	82
C081	Large	128	180	8		8	8	90
	Large	180	256	6		6	6	96
	Small	256	362	2		2	2	98
AND	Small	362	512					98
^o ^o ^o	Medium	512	1024					98
-	Large/Very Large	1024	2048					98
BEDROCK	Bedrock	2048	>2048	2		2	2	100
			Total	50	50	100	100	100

	Reachwide
Chann	el materials (mm)
D ₁₆ =	Silt/Clay
D ₃₅ =	0.71
D ₅₀ =	7.4
D ₈₄ =	139.4
D ₉₅ =	241.4
D ₁₀₀ =	>2048
D ₁₀₀ -	2048

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT1B-R1, Cross Section 15

			ter (mm)	Riffle 100-	Summary		
Particle Class				Count	Class	Percent	
		min	max	count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	12	12	12	
	Very fine	0.062	0.125			12	
•	Fine	0.125	0.250			12	
SAND	Medium	0.25	0.50			12	
7	Coarse	0.5	1.0	2	2	14	
	Very Coarse	1.0	2.0	4	4	18	
	Very Fine	2.0	2.8			18	
	Very Fine	2.8	4.0			18	
	Fine	4.0	5.6			18	
	Fine	5.6	8.0	2	2	20	
JE	Medium	8.0	11.0	6	6	26	
GRAVEL	Medium	11.0	16.0	2	2	28	
	Coarse	16.0	22.6	6	6	34	
	Coarse	22.6	32	4	4	38	
	Very Coarse	32	45	4	4	42	
	Very Coarse	45	64	5	5	47	
	Small	64	90	12	12	59	
COBBLE	Small	90	128	16	16	75	
COBL	Large	128	180	9	9	84	
	Large	180	256	10	10	94	
_	Small	256	362	3	3	97	
ROMORE.	Small	362	512	2	2	99	
	Medium	512	1024			99	
•	Large/Very Large	1024	2048			99	
BEDROCK	Bedrock	2048	>2048	1	1	100	
			Total	100	100	100	

	Cross Section 15					
Ch	Channel materials (mm)					
D ₁₆ = 1.41						
D ₃₅ =	24.65					
D ₅₀ =	69.7					
D ₈₄ =	180.0					
D ₉₅ =	287.3					
D ₁₀₀ =	>2048					

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT2-R1 & R2, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Particle Class		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	21	22	21	21
	Very fine	0.062	0.125					21
	Fine	0.125	0.250		2	2	2	23
SAND	Medium	0.25	0.50		2	2	2	25
יכ	Coarse	0.5	1.0					25
	Very Coarse	1.0	2.0		1	1	1	25
	Very Fine	2.0	2.8		1	1	1	26
	Very Fine	2.8	4.0		3	3	3	29
	Fine	4.0	5.6		6	6	6	35
	Fine	5.6	8.0		5	5	5	40
JEt	Medium	8.0	11.0	1	4	5	5	44
GRAVEL	Medium	11.0	16.0	1	1	2	2	46
	Coarse	16.0	22.6	3	3	6	6	52
	Coarse	22.6	32	5	2	7	7	58
	Very Coarse	32	45	5		5	5	63
	Very Coarse	45	64	9		9	8	72
	Small	64	90	10		10	9	81
COBBLE	Small	90	128	5		5	5	86
COBL	Large	128	180	5		5	5	91
	Large	180	256	6		6	6	96
Rent Parts	Small	256	362	2		2	2	98
	Small	362	512	1		1	1	99
	Medium	512	1024					99
	Large/Very Large	1024	2048	1		1	1	100
BEDROCK	Bedrock	2048	>2048					100
			Total	55	51	106	100	100

	Reachwide					
Chann	Channel materials (mm)					
D ₁₆ =	Silt/Clay					
D ₃₅ =	5.64					
D ₅₀ =	20.1					
D ₈₄ =	111.5					
D ₉₅ =	237.2					
D ₁₀₀ =	2048.0					

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT2-R1, Cross Section 11

			ter (mm)	Riffle 100-	Summary		
Particle Class				Count	Class	Percent	
		min	max	count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	3	3	3	
	Very fine	0.062	0.125			3	
-	Fine	0.125	0.250			3	
SAND	Medium	0.25	0.50			3	
7	Coarse	0.5	1.0			3	
	Very Coarse	1.0	2.0			3	
	Very Fine	2.0	2.8			3	
	Very Fine	2.8	4.0	1	1	4	
	Fine	4.0	5.6	6	6	10	
	Fine	5.6	8.0	10	10	20	
JEL	Medium	8.0	11.0	10	10	30	
GRAVEL	Medium	11.0	16.0	16	16	46	
	Coarse	16.0	22.6	17	17	63	
	Coarse	22.6	32	10	10	73	
	Very Coarse	32	45	13	13	86	
	Very Coarse	45	64	4	4	90	
	Small	64	90	8	8	98	
COBBLE	Small	90	128			98	
CO81	Large	128	180			98	
	Large	180	256			98	
	Small	256	362	2	2	100	
REINDER	Small	362	512			100	
	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross Section 11						
Channel materials (mm)							
D ₁₆ =	D ₁₆ = 6.94						
D ₃₅ =	D ₃₅ = 12.37						
D ₅₀ =	17.4						
D ₈₄ =	42.7						
D ₉₅ =	79.2						
D ₁₀₀ =	362.0						

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT2-R1, Cross Section 12

			ter (mm)	Riffle 100-	Summary		
Particle Class				Count	Class	Percent	
		min	max	count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	10	10	10	
	Very fine	0.062	0.125			10	
•	Fine	0.125	0.250			10	
SAND	Medium	0.25	0.50			10	
J.	Coarse	0.5	1.0			10	
	Very Coarse	1.0	2.0			10	
	Very Fine	2.0	2.8	2	2	11	
	Very Fine	2.8	4.0	7	7	18	
	Fine	4.0	5.6	7	7	25	
	Fine	5.6	8.0	4	4	29	
JEt	Medium	8.0	11.0	8	8	36	
GRAVEL	Medium	11.0	16.0	7	7	43	
	Coarse	16.0	22.6	8	8	50	
	Coarse	22.6	32	20	19	70	
	Very Coarse	32	45	8	8	77	
	Very Coarse	45	64	8	8	85	
	Small	64	90	6	6	90	
COBBLE	Small	90	128	6	6	96	
COBL	Large	128	180	2	2	98	
-	Large	180	256	2	2	100	
-	Small	256	362			100	
BENIEFE	Small	362	512			100	
	Medium	512	1024			100	
*	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	105	100	100	

	Cross Section 12						
Ch	Channel materials (mm)						
D ₁₆ =	D ₁₆ = 3.58						
D ₃₅ =	10.47						
D ₅₀ =	22.1						
D ₈₄ =	61.8						
D ₉₅ =	118.9						
D ₁₀₀ =	256.0						

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT2-R2, Cross Section 8

			ter (mm)	Riffle 100-	Summary		
Particle Class				Count	Class	Percent	
		min	max	count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
-	Fine	0.125	0.250			0	
SAND	Medium	0.25	0.50			0	
7	Coarse	0.5	1.0			0	
	Very Coarse	1.0	2.0			0	
	Very Fine	2.0	2.8	2	2	2	
	Very Fine	2.8	4.0	1	1	3	
	Fine	4.0	5.6	4	4	7	
	Fine	5.6	8.0	6	6	13	
JEL	Medium	8.0	11.0	8	8	21	
GRAVEL	Medium	11.0	16.0	10	10	31	
	Coarse	16.0	22.6	13	13	44	
	Coarse	22.6	32	16	16	60	
	Very Coarse	32	45	16	16	76	
	Very Coarse	45	64	10	10	86	
	Small	64	90	5	5	91	
COBBLE	Small	90	128	2	2	93	
COBL	Large	128	180	2	2	95	
-	Large	180	256	2	2	97	
	Small	256	362	3	3	100	
FEINER	Small	362	512			100	
	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross Section 8						
Ch	Channel materials (mm)						
D ₁₆ =	D ₁₆ = 9.01						
D ₃₅ =	17.79						
D ₅₀ =	25.7						
D ₈₄ =	59.6						
D ₉₅ =	180.0						
D ₁₀₀ =	362.0						

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT2A-R2, Reachwide

		Diame	ter (mm)	Ра	rticle Co	unt	Reach Summary	
Particle Class		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	Mille	20	20	20	20
SILI/CLAY	33				20	20	20	
	Very fine	0.062	0.125					20
.0	Fine	0.125	0.250					20
SAND	Medium	0.25	0.50		3	3	3	23
	Coarse	0.5	1.0		1	1	1	24
	Very Coarse	1.0	2.0		4	4	4	28
	Very Fine	2.0	2.8					28
	Very Fine	2.8	4.0					28
	Fine	4.0	5.6					28
	Fine	5.6	8.0					28
JEL	Medium	8.0	11.0	2	2	4	4	32
GRAVEL	Medium	11.0	16.0	2	4	6	6	38
	Coarse	16.0	22.6	3	4	7	7	45
	Coarse	22.6	32	2	6	8	8	53
	Very Coarse	32	45	4	4	8	8	61
	Very Coarse	45	64	6	2	8	8	69
	Small	64	90	7		7	7	76
COBBLE	Small	90	128	8		8	8	84
C08+	Large	128	180	7		7	7	91
	Large	180	256	7		7	7	98
ROLLER	Small	256	362	2		2	2	100
	Small	362	512					100
	Medium	512	1024					100
v	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide						
Chann	Channel materials (mm)					
D ₁₆ =	Silt/Clay					
D ₃₅ =	13.27					
D ₅₀ =	28.1					
D ₈₄ =	128.0					
D ₉₅ =	220.1					
D ₁₀₀ =	362.0					

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT2A-R1, Cross Section 2

Particle Class		Diameter (mm)		Riffle 100-	Summary	
				Count	Class	Percent
		min	max		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	4	4	4
	Very fine	0.062	0.125			4
	Fine	0.125	0.250			4
SAND	Medium	0.25	0.50			4
	Coarse	0.5	1.0	2	2	6
	Very Coarse	1.0	2.0			6
	Very Fine	2.0	2.8			6
	Very Fine	2.8	4.0			6
	Fine	4.0	5.6			6
	Fine	5.6	8.0			6
JEL	Medium	8.0	11.0	4	4	10
GRAVEL	Medium	11.0	16.0	14	14	24
	Coarse	16.0	22.6	4	4	28
	Coarse	22.6	32	12	12	40
	Very Coarse	32	45	14	14	55
	Very Coarse	45	64	20	20	75
	Small	64	90	15	15	90
COBBLE	Small	90	128	10	10	100
COBL	Large	128	180			100
-	Large	180	256			100
	Small	256	362			100
BUILDER	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	99	100	100

Cross Section 2				
Channel materials (mm)				
D ₁₆ =	12.86			
D ₃₅ =	27.40			
D ₅₀ =	40.3			
D ₈₄ =	78.8			
D ₉₅ =	107.5			
D ₁₀₀ =	128.0			

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT2A-R2, Cross Section 3

Particle Class		Diameter (mm)		Riffle 100-	Summary	
				Count	Class	Percent
		min	max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	12	12	12
SAND	Very fine	0.062	0.125			12
	Fine	0.125	0.250			12
	Medium	0.25	0.50	2	2	14
J.	Coarse	0.5	1.0	1	1	15
	Very Coarse	1.0	2.0	1	1	16
	Very Fine	2.0	2.8			16
	Very Fine	2.8	4.0			16
	Fine	4.0	5.6			16
	Fine	5.6	8.0	4	4	20
JEt	Medium	8.0	11.0	3	3	23
GRAVEL	Medium	11.0	16.0	13	13	36
	Coarse	16.0	22.6	8	8	44
	Coarse	22.6	32	15	15	58
	Very Coarse	32	45	12	12	70
	Very Coarse	45	64	8	8	78
	Small	64	90	11	11	89
COBBLE	Small	90	128	9	9	98
COBL	Large	128	180			98
	Large	180	256	2	2	100
-	Small	256	362			100
RONDER	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	101	100	100

Cross Section 3				
Channel materials (mm)				
D ₁₆ =	5.68			
D ₃₅ =	15.70			
D ₅₀ =	26.3			
D ₈₄ =	76.7			
D ₉₅ =	113.6			
D ₁₀₀ =	256.0			

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT2A-R2, Cross Section 6

		Diame	ter (mm)	Riffle 100-	Summary		
Particle Class				Count	Class	Percent	
	II.	min	max		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	4	4	4	
	Very fine	0.062	0.125			4	
•	Fine	0.125	0.250			4	
SAND	Medium	0.25	0.50	2	2	6	
7	Coarse	0.5	1.0	2	2	8	
	Very Coarse	1.0	2.0			8	
	Very Fine	2.0	2.8			8	
	Very Fine	2.8	4.0	1	1	9	
	Fine	4.0	5.6	2	2	11	
	Fine	5.6	8.0	4	4	15	
JE	Medium	8.0	11.0	1	1	16	
GRAVEL	Medium	11.0	16.0	2	2	18	
	Coarse	16.0	22.6	8	8	26	
	Coarse	22.6	32	12	12	38	
	Very Coarse	32	45	15	15	54	
	Very Coarse	45	64	14	14	68	
	Small	64	90	8	8	76	
COBBLE	Small	90	128	6	6	82	
COBL	Large	128	180	6	6	88	
	Large	180	256	6	6	94	
-	Small	256	362	4	4	98	
. S	Small	362	512	2	2	100	
a de la companya de l	Medium	512	1024			100	
v	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
Total			99	100	100		

	Cross Section 5						
Ch	Channel materials (mm)						
D ₁₆ =	10.45						
D ₃₅ =	29.04						
D ₅₀ =	41.6						
D ₈₄ =	144.7						
D ₉₅ =	280.4						
D ₁₀₀ =	512.0						

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT2B-R2, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt		ummary
Particle Class		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	16	17	17	17
	Very fine	0.062	0.125		1	1	1	18
	Fine	0.125	0.250					18
SAND	Medium	0.25	0.50	2	2	4	4	22
יכ	Coarse	0.5	1.0	1	1	2	2	24
	Very Coarse	1.0	2.0		2	2	2	26
	Very Fine	2.0	2.8		3	3	3	29
	Very Fine	2.8	4.0	1	4	5	5	34
	Fine	4.0	5.6	3	6	9	9	43
	Fine	5.6	8.0	2	3	5	5	48
VEL	Medium	8.0	11.0	5	2	7	7	55
GRAVEL	Medium	11.0	16.0	8	2	10	10	65
	Coarse	16.0	22.6	5	3	8	8	73
	Coarse	22.6	32	5	2	7	7	80
	Very Coarse	32	45	5	3	8	8	88
	Very Coarse	45	64	4		4	4	92
	Small	64	90	4		4	4	96
COBBLE	Small	90	128	2		2	2	98
COPT	Large	128	180	2		2	2	100
	Large	180	256					100
	Small	256	362					100
Ś	Small	362	512					100
RENIER	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048	50	50			100
	Total					100	100	100

Reachwide					
Chann	el materials (mm)				
D ₁₆ =	Silt/Clay				
D ₃₅ =	4.15				
D ₅₀ =	8.8				
D ₈₄ =	37.9				
D ₉₅ =	82.6				
D ₁₀₀ =	180.0				

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT2B-R2, Cross Section 9

	Particle Class		ter (mm)	Riffle 100-	Sum	Summary		
Par				Count	Class	Percent		
		min	max	count	Percentage	Cumulative		
SILT/CLAY	Silt/Clay	0.000	0.062			0		
	Very fine	0.062	0.125			0		
•	Fine	0.125	0.250			0		
SAND	Medium	0.25	0.50	3	3	3		
7	Coarse	0.5	1.0			3		
	Very Coarse	1.0	2.0	4	4	6		
	Very Fine	2.0	2.8			6		
	Very Fine	2.8	4.0			6		
	Fine	4.0	5.6			6		
	Fine	5.6	8.0	4	4	10		
JE	Medium	8.0	11.0	6	5	15		
GRAVEL	Medium	11.0	16.0	4	4	19		
	Coarse	16.0	22.6	17	15	35		
	Coarse	22.6	32	14	13	47		
	Very Coarse	32	45	20	18	65		
	Very Coarse	45	64	16	15	80		
	Small	64	90	16	15	95		
COBBLE	Small	90	128	4	4	98		
COBL	Large	128	180	2	2	100		
	Large	180	256			100		
-	Small	256	362			100		
RONDER	Small	362	512			100		
øř	Medium	512	1024			100		
•	Large/Very Large	1024	2048			100		
BEDROCK	Bedrock	2048	>2048			100		
			Total	110	100	100		

	Cross Section 9						
Ch	Channel materials (mm)						
D ₁₆ =	11.64						
D ₃₅ =	22.88						
D ₅₀ =	33.7						
D ₈₄ =	70.3						
D ₉₅ =	94.1						
D ₁₀₀ =	180.0						

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT2C-R2 & R3, Reachwide

		Diame	ter (mm)	Ра	rticle Co	unt		ummary
Particle Class		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	4	20	24	26	26
	Very fine	0.062	0.125					26
	Fine	0.125	0.250	1	10	11	12	38
SAND	Medium	0.25	0.50	1	4	5	5	43
יל	Coarse	0.5	1.0		2	2	2	46
	Very Coarse	1.0	2.0					46
	Very Fine	2.0	2.8	1		1	1	47
	Very Fine	2.8	4.0					47
	Fine	4.0	5.6	1		1	1	48
	Fine	5.6	8.0	4	2	6	7	54
JEL	Medium	8.0	11.0	6	2	8	9	63
GRAVEL	Medium	11.0	16.0	2		2	2	65
	Coarse	16.0	22.6	2		2	2	67
	Coarse	22.6	32	3		3	3	71
	Very Coarse	32	45	3		3	3	74
	Very Coarse	45	64	7		7	8	82
	Small	64	90	6		6	7	88
COBBLE	Small	90	128	7		7	8	96
COBL	Large	128	180	3		3	3	99
	Large	180	256	1		1	1	100
-	Small	256	362					100
RONDER	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	52	40	92	100	100

Reachwide					
Chann	el materials (mm)				
D ₁₆ =	Silt/Clay				
D ₃₅ =	0.21				
D ₅₀ =	6.3				
D ₈₄ =	72.9				
D ₉₅ =	124.2				
D ₁₀₀ =	256.0				

Reachwide and Cross Section Pebble Count Plots Hopewell Stream Mitigation Site (NCDMS Project No. 95352) Monitoring Year 1 - 2015 UT2C-R2, Cross Section 16

Particle Class		Diame	ter (mm)	Riffle 100-	Summary		
				Count	Class	Percent	
		min	max	count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2	
	Very fine	0.062	0.125	2	2	4	
	Fine	0.125	0.250			4	
SAND	Medium	0.25	0.50			4	
7	Coarse	0.5	1.0	4	4	8	
	Very Coarse	1.0	2.0			8	
	Very Fine	2.0	2.8	3	3	12	
	Very Fine	2.8	4.0	4	4	16	
	Fine	4.0	5.6	10	11	26	
	Fine	5.6	8.0	12	13	39	
JEt	Medium	8.0	11.0	11	12	51	
GRAVEL	Medium	11.0	16.0	9	9	60	
	Coarse	16.0	22.6	10	11	71	
	Coarse	22.6	32	6	6	77	
	Very Coarse	32	45	2	2	79	
	Very Coarse	45	64	3	3	82	
	Small	64	90	4	4	86	
COBBLE	Small	90	128	8	8	95	
COBL	Large	128	180	2	2	97	
	Large	180	256	2	2	99	
-	Small	256	362	1	1	100	
BOULDER.	Small	362	512			100	
ð	Medium	512	1024			100	
•	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	95	100	100	

Cross Section 16							
Ch	Channel materials (mm)						
D ₁₆ =	4.03						
D ₃₅ =	7.16						
D ₅₀ =	10.8						
D ₈₄ =	74.6						
D ₉₅ =	133.6						
D ₁₀₀ =	362.0						

APPENDIX 5. Hydrology Summary Data and Plots

Table 13. Verification of Bankfull Events

Monitoring Year	Reach	Date of Data Collection	Date of Occurrence	Method
		3/25/2015	Unknown	Crest Gage
		7/9/2015	Unknown	Crest Gage
	UT1B Reach 1 (Gage #1- XS 15)	8/6/2015	8/6/2015	Stream Gage
		10/3/2015	10/3/2015	Stream Gage
		11/5/2015	11/2/2015	Crest Gage, Stream Gage
		7/9/2015	Unknown	Crest Gage
	UT2 Reach 2 (Gage #2- XS 8)	10/3/2015	10/3/2015	Stream Gage
		11/5/2015	11/2/2015	Crest Gage, Stream Gage
MY1		3/25/2015	Unknown	Crest Gage
	UT2A Reach 2 (Gage #3- XS 6)	10/3/2015	10/3/2015	Stream Gage
		11/5/2015	11/2/2015	Crest Gage
		3/25/2015	Unknown	Crest Gage
	UT2B Reach 2 (Gage #4- XS 9)	7/9/2015	Unknown	Crest Gage
	012B Reacti 2 (Gage #4- X3 9)	10/3/2015	10/3/2015	Stream Gage
		11/5/2015	11/2/2015	Crest Gage
	UT2C Reach 2 (Gage #5- XS 16)	10/3/2015	10/3/2015	Stream Gage
	0120 Neach 2 (Gage #5- X5 10)	11/5/2015	11/2/2015	Crest Gage

BANKFULL VERIFICATION PHOTOGRAPHS

UT2 Reach 1 – (11/05/2015)

Little River Reach 2 – (11/05/2015)

